Running Ad Hoc Commands

Ansible Fundamentals



* Ansible Configuration File

* Ansible command syntax

* Run ad-hoc commands

* Authenticating Ansible Connections




Ansible Configuration File overview

Introduction to Ansible



Configuration File

 Unified Settin?s: The Ansible configuration ﬁle,_ansible.cfg, provides a consolidated
location to define settings that dictate how Ansible operates and interacts with
different systemes.

« Hierarchy of Precedence: Ansible can have multiple configuration files, and they
are procéssed in a specific order of precedence, allowing for both global and
project-specific settings.

* INI Format: The configuration file uses the INI format, making it easy to read and
edit. Sections are defined using square brackets, and key-vallUe pairs within those
sections set various configurations.

» Default Location: By default, Ansible looks for the configuration file at. |
/etc/ansible/ansible.cfg, but this can be overridden by user-specific or project-
specific configuration files.

* Flexibility: The configuration file allows users to mo.dh? a wide range of .
parameters, from specifying the inventory path, adjusting parallel fask execution,
setting timeout values, to defining custormn plugins or modules paths.



Places for Configuration

« ANSIBLE_CONFIG Environment Variable

« An environment variable that points to the location of the config file.

 Current Directory
« ansible.cfg in the current directory from which ansible or ansible-playbook is run.

* Home Directory
« .ansible.cfg in the user's home directory.

* Global Configuration
« /etc/ansible/ansible.cfg



Some configurations

« inventory: Specifies the location of the inventory file, which contains a list of the
nodes that Ansible manages.
« Example: inventory = /etc/ansible/hosts

« remote_user: Default username used to connect to target machines.
* Example: remote_user = admin

. hos_t_key_ch,eckin?: Determines it Ansible checks the remote host's SSH key.
Tumm% this off is useful for managing a large number of hosts without initial
manual intervention.

* Example: host_key_checking = False

» forks: Defines the number of parallel processes to use when communicating with
remote hosts. It essentially controls parallelism.
* Example: forks = 10

« Log_path: Specifies the location where Ansible should write its log file. This is
usetul for troubleshooting and auditing purposes.
« Example: log_path = /var/log/ansible.log



Ansible command syntax

Introduction to Ansible



CLI Commands

 ansible
 ansible—-config
 ansible—console
 ansible—-doc
 ansible-inventory
 ansible—-playbook
 ansible-pull
 ansible—-vault




CLI Commands: ansible

* This command allows you to execute ad-hoc commands on target
hosts

« Example: This pings all hosts in your inventory to check if they are
reachable.

®
ansible all -m ping



CLI Commands: ansible—-config

* Allows you to view, list, and manage Ansible configuration
« Example: This displays the current Ansible configuration

®
ansible-config view



CLI Commands: ansible—console

* Provides an interactive REPL (Read-Eval-Print Loop) interface for
executing ad-hoc commands

« Example: This starts the interactive Ansible console

@
ansible—-console



CLI Commands: ansible—-doc

e Provides documentation on Ansible modules
« Example: This shows documentation for the yum module.

®
ansible-doc yum



CLI Commands: ansible—-1inventory

* Allows you to view and manage the Ansible inventory
« Example: This lists all hosts in the current inventory

ansible-inventory --list




CLI Commands: ansible—-playbook

* Executes Ansible playbooks, which are scripts that define a set of tasks
to be run on target hosts

« Example: This runs the deploy_app.yml playbook.

ansible-playbook deploy_app.yml



CLI Commands: ansible-pull

* A mode that inverts the default push architecture of Ansible into a pull
architecture, which can be useful for scalable or decentralized setups

» Example: This pulls a playbook from a Git repository and executes it
locally

ansible-pull -U https://github.com/user/repo.git



CLI Commands: ansible-pull

* Provides encryption and decryption capabilities for sensitive data in
nlaybooks or variables files

* Example: This encrypts the secrets.yml file.

[
ansible-vault encrypt secrets.yml



Run ad-hoc commands

Introduction to Ansible



Ad-Hoc Commands

* An ad hoc command uses the /usr/bin/ansible command-line
tool to automate a single task on one or more managed nodes.

* Ad hoc commands are quick and easy, but they are not reusable.
* Ad hoc commands demonstrate the simplicity and power of Ansible

 The concepts you learn here will port over directly to the playbook
language. Before reading and executing these examples, please read




Why Using Ad-hoc Commands?

» Ad hoc commands are great for tasks you repeat rarely

 For example, it you want to power off all the machines in your lab for
Christmas vacation, you could execute a quick one-liner in Ansible
without writing a playbook

* An ad hoc command looks like this:

$ ansible [pattern] -m [module] -a " [module options]"

* The —a option accepts options either through the key=value syntax
or a JSON string starting with { and ending with } for more complex
option structure



How to identify machines

 Ad hoc commands uses inventories to define the machines to be
reached

* Inventory may be referenced in different ways following this

precedence list

« Command Line =1 Option
« ANSIBLE_INVENTORY Environment Variable
« ansible. cfg Configuration File:
 Default Inventory Path: /etc/ansible/hosts

* Inventory file defines groups of hosts and identify them with a name

* When executing the command you use patterns to define which
machines you will run the command



Common Patterns

All hosts all (or *)

One host hostT

Multiple hosts host1:host2 (or host1,host?)

One group webservers

Multiple groups webservers:dbservers All hosts in webservers plus all hosts in dbservers
Excluding groups webservers:latlanta All hosts in webservers except those in atlanta
Intersection of groups webservers:&staging Any hosts in webservers that are also in staging

Control node localhost Run command on control node only



Simple ad-hoc commands

» Reboot all servers on web group on inventory

$ ansible web -a "/sbin/reboot”

 Ansible runs 5 execution simultaneous. It you want to execute 10, you
use flag —f

$ ansible web -a "/sbin/reboot" —-f 10




Simple ad-hoc commands

* If you want to execute the command with another username, you may
use —u flag

$ ansible atlanta -a "/sbin/reboot" —-f 10 —-u username

* And sometimes you need to elevate your user

$ ansible atlanta -a "/sbin/reboot" —f 10 -u username --become [--ask-become-pass]




Run ad-hoc commands using modules

* On previous samples, you're using the ansible.builtin.command

* This is the default module and you don't need to specify on every
command

* The flag —a represent the argument for module command, that on this
case represent the command itself

* To specity a different module you may use —m flag

* Module name can be composed by several blocks using a dot to
separate them

* When you do use this full name, the module will be related with
ansible.builtin



Run ad-hoc commands using modules

* Ping all machines

$ ansible all -m ping

« Copy /etc/hosts to /tmp/hosts on atlanta group within the
iInventory

ansible atlanta -m ansible.builtin.copy -a "src=/etc/hosts dest=/tmp/hosts"




Run ad-hoc commands using modules

 You may create folders with several parameters

ansible webservers -m file -a "dest=/path mode=600 owner=user group=group"

* Restart httpd service on webservers group within the inventory

$ ansible webservers -m service -a "name=httpd state=restarted"




Run ad-hoc commands with explicit inventory

* Using —1 flag to define inventory

$ ansible -i inventory/dev.yml webservers -m service —a "name=httpd state=restarted"



Modules names

* In modern Ansible practices, it's recommended to use the fully qualified
collection name (FQCN) for modules

* This practice helps in clearly distinguishing between core modules and
those from other collections, ensuring clarity and avoiding conflicts.

« For example, instead of using just copy, ping, or file, you would use:
« ansible.builtin.copy

« ansible.builtin.ping
 ansible.builtin.file
* This is especially useful in environments where custom modules or

modules from other collections are also being used.



Run Ad-Hoc Commands



Authenticating Ansible Connections

Introduction to Ansible



How to authenticate

* SSH Keys

 Ansible primarily uses SSH keys for authentication

* [It's the most common method where the control machine has a private key and the managed
nodes have the corresponding public key in the authorized keys list

e Username & Password

« While less secure and not recommended for production, Ansible can use SSH with a username
and password for authentication

 This method can be useful in scenarios where key-based authentication isn't feasible
* You need to have sshpass installed on control node



How to authenticate

« Become (Privilege Escalation)
* For tasks that require elevated privileges, Ansible uses the become method.
* This can leverage tools like sudo, su, pbrun, and others to gain higher-level permissions.

« SSH Configuration & ssh-agent

 Ansible can leverage existing SSH configurations and keys loaded into the ssh-agent for
authentication.

* This allows users to use jump hosts, non-default ports, and other SSH settings.

* Vault for Encrypted Credentials

 Ansible Vault can encrypt sensitive data, including authentication credentials.

 This ensures that secrets are stored securely but can be decrypted by Ansible during playbook
runs.



SSH Key

« Ansible leverages the native SSH mechanism for authentication, which
means it uses the SSH keys already defined on the control node (the
machine running Ansible) to authénticate to remote servers

* Default Private Key
« By default, Ansible uses the private key located at ~/.ssh/id_rsa

* Specitying a Different Key
* |f you want to use a different private key, you_can specify it using the ——private—key option or
set it in the Ansible configuration file (ansible. c¥g) using the private_key_filé setting.

* ssh-agent
* If you're using ssh—agent on the control node, Ansible can leverage it.

« When you add your Erivate keys to the agent using ssh—add, Ansible will use the identities loaded
into the agent for authentication.

* Ansible Vault

* |f you need to store SSH private keys securely, you can encrypt them using Ansible Vault.

« When running playbooks, you can decrypt the key on-the-fly, ensuring that sensitive keys are not
exposed in plaintext.



Authentication






