
Running Ad Hoc Commands

Ansible Fundamentals



Agenda

• Ansible Configuration File
• Ansible command syntax
• Run ad-hoc commands
• Authenticating Ansible Connections



Ansible Configuration File overview

Introduction to Ansible



Configuration File
• Unified Settings: The Ansible configuration file, ansible.cfg, provides a consolidated 

location to define settings that dictate how Ansible operates and interacts with 
different systems.
• Hierarchy of Precedence: Ansible can have multiple configuration files, and they 

are processed in a specific order of precedence, allowing for both global and 
project-specific settings.
• INI Format: The configuration file uses the INI format, making it easy to read and 

edit. Sections are defined using square brackets, and key-value pairs within those 
sections set various configurations.
• Default Location: By default, Ansible looks for the configuration file at 
/etc/ansible/ansible.cfg, but this can be overridden by user-specific or project-
specific configuration files.
• Flexibility: The configuration file allows users to modify a wide range of 

parameters, from specifying the inventory path, adjusting parallel task execution, 
setting timeout values, to defining custom plugins or modules paths.



Places for Configuration

• ANSIBLE_CONFIG Environment Variable
• An environment variable that points to the location of the config file.

• Current Directory
• ansible.cfg in the current directory from which ansible or ansible-playbook is run.

• Home Directory 
• .ansible.cfg in the user's home directory.

• Global Configuration
• /etc/ansible/ansible.cfg



Some configurations 
• inventory: Specifies the location of the inventory file, which contains a list of the 

nodes that Ansible manages.
• Example: inventory = /etc/ansible/hosts

• remote_user: Default username used to connect to target machines.
• Example: remote_user = admin

• host_key_checking: Determines if Ansible checks the remote host's SSH key. 
Turning this off is useful for managing a large number of hosts without initial 
manual intervention.
• Example: host_key_checking = False

• forks: Defines the number of parallel processes to use when communicating with 
remote hosts. It essentially controls parallelism.
• Example: forks = 10

• log_path: Specifies the location where Ansible should write its log file. This is 
useful for troubleshooting and auditing purposes.
• Example: log_path = /var/log/ansible.log



Ansible command syntax

Introduction to Ansible



CLI Commands

• ansible
• ansible-config
• ansible-console
• ansible-doc
• ansible-inventory
• ansible-playbook
• ansible-pull
• ansible-vault



CLI Commands: ansible

• This command allows you to execute ad-hoc commands on target 
hosts
• Example: This pings all hosts in your inventory to check if they are 

reachable.



CLI Commands: ansible-config

• Allows you to view, list, and manage Ansible configuration
• Example: This displays the current Ansible configuration



CLI Commands: ansible-console

• Provides an interactive REPL (Read-Eval-Print Loop) interface for 
executing ad-hoc commands
• Example: This starts the interactive Ansible console



CLI Commands: ansible-doc

• Provides documentation on Ansible modules
• Example: This shows documentation for the yum module.



CLI Commands: ansible-inventory

• Allows you to view and manage the Ansible inventory
• Example: This lists all hosts in the current inventory



CLI Commands: ansible-playbook

• Executes Ansible playbooks, which are scripts that define a set of tasks 
to be run on target hosts
• Example: This runs the deploy_app.yml playbook.



CLI Commands: ansible-pull

• A mode that inverts the default push architecture of Ansible into a pull 
architecture, which can be useful for scalable or decentralized setups
• Example: This pulls a playbook from a Git repository and executes it 

locally



CLI Commands: ansible-pull

• Provides encryption and decryption capabilities for sensitive data in 
playbooks or variables files
• Example: This encrypts the secrets.yml file.



Run ad-hoc commands

Introduction to Ansible



Ad-Hoc Commands

• An ad hoc command uses the /usr/bin/ansible command-line 
tool to automate a single task on one or more managed nodes. 
• Ad hoc commands are quick and easy, but they are not reusable. 
• Ad hoc commands demonstrate the simplicity and power of Ansible
• The concepts you learn here will port over directly to the playbook 

language. Before reading and executing these examples, please read



Why Using Ad-hoc Commands?

• Ad hoc commands are great for tasks you repeat rarely
• For example, if you want to power off all the machines in your lab for 

Christmas vacation, you could execute a quick one-liner in Ansible 
without writing a playbook
• An ad hoc command looks like this:

• The -a option accepts options either through the key=value syntax 
or a JSON string starting with { and ending with } for more complex 
option structure



How to identify machines

• Ad hoc commands uses inventories to define the machines to be 
reached
• Inventory may be referenced in different ways following this 

precedence list
• Command Line -i Option
• ANSIBLE_INVENTORY Environment Variable
• ansible.cfg Configuration File:
• Default Inventory Path: /etc/ansible/hosts

• Inventory file defines groups of hosts and identify them with a name
• When executing the command you use patterns to define which 

machines you will run the command



Common Patterns

Description Pattern(s) Targets

All hosts all (or *)

One host host1

Multiple hosts host1:host2 (or host1,host2)

One group webservers

Multiple groups webservers:dbservers All hosts in webservers plus all hosts in dbservers

Excluding groups webservers:!atlanta All hosts in webservers except those in atlanta

Intersection of groups webservers:&staging Any hosts in webservers that are also in staging

Control node localhost Run command on control node only



Simple ad-hoc commands

• Reboot all servers on web group on inventory

• Ansible runs 5 execution simultaneous. If you want to execute 10, you 
use flag -f



Simple ad-hoc commands

• If you want to execute the command with another username, you may 
use –u flag

• And sometimes you need to elevate your user



Run ad-hoc commands using modules

• On previous samples, you’re using the ansible.builtin.command
• This is the default module and you don’t need to specify on every 

command
• The flag –a represent the argument for module command, that on this 

case represent the command itself
• To specify a different module you may use –m flag
• Module name can be composed by several blocks using a dot to 

separate them
• When you do use this full name, the module will be related with 
ansible.builtin



Run ad-hoc commands using modules

• Ping all machines

• Copy /etc/hosts to /tmp/hosts on atlanta group within the 
inventory



Run ad-hoc commands using modules

• You may create folders with several parameters

• Restart httpd service on webservers group within the inventory



Run ad-hoc commands with explicit inventory

• Using –i flag to define inventory



Modules names

• In modern Ansible practices, it's recommended to use the fully qualified 
collection name (FQCN) for modules
• This practice helps in clearly distinguishing between core modules and 

those from other collections, ensuring clarity and avoiding conflicts.
• For example, instead of using just copy, ping, or file, you would use:

• ansible.builtin.copy
• ansible.builtin.ping
• ansible.builtin.file

• This is especially useful in environments where custom modules or 
modules from other collections are also being used.



Run Ad-Hoc Commands

Demo



Authenticating Ansible Connections

Introduction to Ansible



How to authenticate

• SSH Keys
• Ansible primarily uses SSH keys for authentication
• It's the most common method where the control machine has a private key and the managed 

nodes have the corresponding public key in the authorized keys list

• Username & Password
• While less secure and not recommended for production, Ansible can use SSH with a username 

and password for authentication
• This method can be useful in scenarios where key-based authentication isn't feasible
• You need to have sshpass installed on control node



How to authenticate

• Become (Privilege Escalation)
• For tasks that require elevated privileges, Ansible uses the become method. 
• This can leverage tools like sudo, su, pbrun, and others to gain higher-level permissions.

• SSH Configuration & ssh-agent
• Ansible can leverage existing SSH configurations and keys loaded into the ssh-agent for 

authentication. 
• This allows users to use jump hosts, non-default ports, and other SSH settings.

• Vault for Encrypted Credentials
• Ansible Vault can encrypt sensitive data, including authentication credentials. 
• This ensures that secrets are stored securely but can be decrypted by Ansible during playbook 

runs.



SSH Key

• Ansible leverages the native SSH mechanism for authentication, which 
means it uses the SSH keys already defined on the control node (the 
machine running Ansible) to authenticate to remote servers
• Default Private Key

• By default, Ansible uses the private key located at ~/.ssh/id_rsa
• Specifying a Different Key

• If you want to use a different private key, you can specify it using the --private-key option or 
set it in the Ansible configuration file (ansible.cfg) using the private_key_file setting.

• ssh-agent
• If you're using ssh-agent on the control node, Ansible can leverage it. 
• When you add your private keys to the agent using ssh-add, Ansible will use the identities loaded 

into the agent for authentication.
• Ansible Vault

• If you need to store SSH private keys securely, you can encrypt them using Ansible Vault. 
• When running playbooks, you can decrypt the key on-the-fly, ensuring that sensitive keys are not 

exposed in plaintext.



Authentication

Demo




