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YAML Overview: Basics

• Format
• YAML stands for "Yet Another Markup Language." 
• It's a human-readable data serialization format

• Indentation
• Uses spaces (not tabs) for indentation, which denotes hierarchy
• Most of the issues with YAML is about indentation

• Case Sensitive
• YAML is case sensitive

• YAML File is a collection of key-value pairs



• Scalars
• Single values, which can be strings, numbers, or booleans

• Mappings
• Key-value pairs, similar to dictionaries or hashes in other languages
• Denoted with key: value format

• Lists
• Ordered sequences of values
• Each item in a list is denoted with a - (dash) followed by a space

YAML Overview: Data Types



YAML Overview: Document Start/End

• Start
• An optional --- at the beginning indicates the start of a YAML document

• End: 
• An optional ... at the end indicates the end of a YAML document

• If you want to add more than one playbook on a file, you need to use 
the start element (---) to separate the objects



• Quotation
• Strings can be written with or without quotes
• However, for strings containing special characters or reserved words, it's safer to use single or double 

quotes

• Multiline
• Use the > character for folded style (newlines become spaces)
• Use | for literal style (newlines are preserved)

• Comments
• Use # to add comments
• Everything after # on that line is a comment.

• More here: 
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.ht
ml#yaml-syntax

YAML Overview: Strings and comments

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html


YAML Overview: Document Start/End

Document Start

Key-Value Pair

List Elements

List Property
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• A playbook orchestrates multiple 
plays, defining the broader 
automation workflow.
• A play is a collection of tasks 

executed on a group of hosts.
• A task uses a module to execute that 

action with specific parameters.
• A module is a tool that performs a 

specific action.

Modules, Tasks, Plays, Playbooks



• A playbook is a YAML file that contains one or more plays
• It provides a script-like experience, where multiple plays are executed in 

order, each with its set of tasks.
• Relationship

• The playbook is the top-level component
• It orchestrates the execution of plays, which in turn run tasks that call upon modules

Playbook



• A play is a set of tasks that will be run on a particular set of hosts in a 
sequence
• It defines which hosts from the inventory the tasks should run on and 

sets variables that can be used in the tasks.
• Relationship

• Plays organize tasks
• A single playbook can contain multiple plays, allowing for different sets of tasks to be run on 

different hosts or groups of hosts.

Play



• Tasks define a single action that will be executed on the target host
• Each task calls an Ansible module with specific arguments
• Relationship

• A task is essentially an instance of a module with specific parameters
• Multiple tasks together form the actions in a play.

Tasks



• Modules are the units of work in Ansible
• They are like command-line tools but can be run directly or through a 

playbook
• Each module is designed to accomplish a specific task, such as 

managing packages, creating users, or interacting with APIs
• Relationship

• Modules are the building blocks that tasks use to perform actions.

Modules



• Modules are the units of work in Ansible
• They are like command-line tools but can be run directly or through a 

playbook
• Each module is designed to accomplish a specific task, such as 

managing packages, creating users, or interacting with APIs
• Relationship

• Modules are the building blocks that tasks use to perform actions.

Variables



• name
• Specify play name
• Important for identify on logs

• hosts
• Specifies which hosts the tasks will run on
• Can target individual hosts, groups, or patterns

• tasks
• A list of tasks to execute in order
• Each task calls an Ansible module.

Basic Play Structure



Basic Playbook



• Plays
• In a playbook, plays are executed sequentially
• If you have multiple plays in a playbook, the first play will run to completion on all targeted 

hosts before the second play starts, and so on

• Tasks
• Within a play, tasks are also executed sequentially
• The first task will run on all targeted hosts before the second task starts, and so on
• Inside one task, several hosts run on parallel 

Sequential Execution



• You can define them directly on the playbook, using group variables or 
host variables
• To reference a variable you may user the format {{ var_name }}
• Ansible already have some built-in variables that can grant you some 

context variables
• inventory_hostname
• hostvars
• ansible_play_name

• Complete list: 
https://docs.ansible.com/ansible/latest/reference_appendices/special_v
ariables.html

Variables

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html


• name: 
• A human-readable description of the task

• Module
• The action to be taken, using an Ansible module
• This parameter uses the module name directly

• args/vars
• Arguments or parameters for the module

Tasks Structure



Playbook with 
Variables



• Using ansible-playbook command

Execute Playbook



• Same as ad-hoc commands
• -i or --inventory: Specify the location of the inventory file
• -u or --user: Define the remote user to execute tasks as. By default, it uses 

the current user
• -k: Ask for SSH password instead of using key-based authentication
• -b or --become: Allows privilege escalation (e.g., using sudo). Useful if 

tasks need root privileges
• --ask-become-pass or -K: Ask for privilege escalation password (e.g., 

sudo password)
• -v to -vvvv: Increase verbosity. More "v"s give more detailed output
• --check or -C: Run in check mode. Ansible will not make any changes 

on the hosts, but will simulate the execution to show what would have 
changed

Common Options



• Using ansible-playbook command with –C flag allow you to run on 
dry-run mode
• This mode don’t so any change but can list you all possible changes

if you really execute the playbook

Execute Playbook with DryRun



Run your First Playbook

Demo



Idempotent Playbooks
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• Writing idempotent tasks is a fundamental principle in Ansible 
• Ensures that running your playbook multiple times doesn't change the 

system state after the first run, unless the system state has changed in 
the meantime
• A task is idempotent if it can be applied multiple times without 

changing the result beyond the initial application
• Ensures consistency, avoids unintended side-effects, and makes 

playbooks safe to run repeatedly

Understanding Idempotency



• In an imperative approach, you specify how to achieve a particular 
state, detailing each step
• Concentrates on the process and sequence of operations to achieve 

the desired result
• Offers more control and can be more flexible in certain scenarios, as 

you dictate the exact sequence of operations.
• Example: Traditional shell scripts or batch scripts where you list each 

command to run in sequence are imperative.

Imperative Configuration



• In a declarative approach, you specify what you want the system to 
look like, not how to achieve that state
• Concentrates on the desired end state
• The system or tool figures out the necessary steps to reach that state
• Often simpler and more readable, as you don't need to specify every 

step
• Reduces the chance of errors since the tool handles the process.
• Example: Ansible playbooks, Terraform configurations, and Kubernetes 

manifests are primarily declarative

Declarative Configuration



• Clarity vs. Control
• Declarative configurations are often clearer and more concise, focusing on the "what”
• Imperative configurations give more control by focusing on the "how"

• Tool Responsibility
• In declarative configurations, the tool is responsible for figuring out how to achieve the desired state, 

reducing potential errors
• In imperative configurations, the responsibility lies more with the developer or operator

• Flexibility
• While declarative tools are designed for specific use cases (e.g., Ansible for configuration 

management), imperative approaches can be more flexible and can handle a wider range of tasks

• Learning Curve
• Declarative tools might have a steeper initial learning curve as users need to understand the tool's 

conventions and capabilities
• Imperative approaches, being more manual, might be more intuitive initially but can become 

complex as tasks grow

Declarative vs Imperative



• Commands like shell or command are not inherently idempotent
• If you must use them, ensure idempotency by adding conditions
• Most Ansible modules are designed to be idempotent
• Always prefer using a module over running raw commands
• For example, use the file module to manage files instead of raw shell or 

command tasks.

Use Ansible Modules Properly



• Run playbooks with --check (check mode) to see what changes 
would be made without actually applying them
• A truly idempotent task will not report changes on subsequent runs 

unless the system state has changed

Test with Check Mode



• Non-idempotent way

• Idempotent way

Non-idempotent vs Idenpontent way



Commonly used Modules
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• Manage user accounts: 
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/us
er_module.html

User Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html


• Manage group accounts:
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/gr
oup_module.html

Group Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html


• Manage yum packages: 
ansible.builtin.yum module –
Manages packages with the 
yum package manager —
Ansible Documentation

• You can find modules for 
several package managers

Yum Module (Package management)

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html


• Manage services: 
https://docs.ansible.com/ansibl
e/latest/collections/ansible/buil
tin/service_module.html

Service Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html


• Copies files from the local to a 
location on the remote machine
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/co
py_module.html#ansible-
collections-ansible-builtin-copy-
module

Copy Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html


• Manages file properties
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/fil
e_module.html#ansible-
collections-ansible-builtin-file-
module

File Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html


Task Results
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• Every time you execute a task, you get a result
• Possible results

• OK
• Changed
• Failed
• Skipped
• Unreachable

Task Results



• The task executed successfully
• The module ran without any errors, and the desired state expressed in 

the task is already in place on the target system
• In other words, the system was already in the desired state, so no 

changes were made.
• Example: If you have a task to ensure a package is installed, and the 

package is already installed, the task result will be "OK".

Task Results: OK



• The task executed successfully and made changes to the target system
• The module ran without any errors, and the system was not initially in 

the desired state, so Ansible made the necessary changes to bring the 
system to that state.
• Example: If you have a task to ensure a package is installed, and the 

package was not initially installed, Ansible will install it, and the task 
result will be "changed".

Task Results: Changed



• The task did not execute successfully and encountered an error.
• An error occurred that prevented the module from completing its 

operation. 
• This could be due to various reasons like incorrect parameters, issues 

on the target system, unreachable hosts, etc.
• Example: If you have a task to ensure a package is installed, but there's 

an issue with the package repository or network connectivity, the task 
might fail to install the package, resulting in a "failed" state.

Task Results: Failed



• The task was intentionally not executed on a particular host
• Tasks can be conditionally executed based on the evaluation of a when 

clause
• If the condition in the when clause evaluates to false, the task will be 

skipped for that host
• Example: If you run the following task on a RedHat system, the result 

will be ”Skipped”

Task Results: Skipped



• Ansible was unable to establish a connection to the target host
• This state typically indicates a fundamental communication issue 

between the Ansible control node and the target host
• Common reasons include network connectivity problems, incorrect SSH 

configurations, SSH key mismatches, host firewalls blocking access, or 
the target host being down
• When a host is in an "Unreachable" state, Ansible will not attempt any 

further tasks on that host for the duration of the playbook run

Task Results: Unreachable



Validating the Result
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• You may validate the results of a task and use that results on following 
tasks
• Usually, you start to save task output to a variable
• Then you may use variable content on other tasks to print values or 

decide about task execution

Validating Results



• Use the register keyword to save the output of a task to a variable

• Then you can use variable attributes as a common variable
• Each task (module) will add specific attributes
• Common attributes include
• command_output.stdout: The standard output of the command
• command_output.stderr: The standard error of the command
• command_output.rc: The return code of the command
• command_output.changed: Boolean indicating if the task made changes

Getting task output



• Print messages, variables, or task results for debugging purposes

Debugging outputs



• Customize when Ansible should consider a task as failed using the 
failed_when keyword.

Handling Failures Manually



Use Task Results

Demo




