
Ansible Playbooks

Ansible Fundamentals



Agenda

• YAML overview
• General Playbook Structure
• Idempotent Playbooks
• Commonly Used Modules
• Task Results
• Validating the Result



YAML overview

Ansible Playbooks



YAML Overview: Basics

• Format
• YAML stands for "Yet Another Markup Language." 
• It's a human-readable data serialization format

• Indentation
• Uses spaces (not tabs) for indentation, which denotes hierarchy
• Most of the issues with YAML is about indentation

• Case Sensitive
• YAML is case sensitive

• YAML File is a collection of key-value pairs



• Scalars
• Single values, which can be strings, numbers, or booleans

• Mappings
• Key-value pairs, similar to dictionaries or hashes in other languages
• Denoted with key: value format

• Lists
• Ordered sequences of values
• Each item in a list is denoted with a - (dash) followed by a space

YAML Overview: Data Types



YAML Overview: Document Start/End

• Start
• An optional --- at the beginning indicates the start of a YAML document

• End: 
• An optional ... at the end indicates the end of a YAML document

• If you want to add more than one playbook on a file, you need to use 
the start element (---) to separate the objects



• Quotation
• Strings can be written with or without quotes
• However, for strings containing special characters or reserved words, it's safer to use single or double 

quotes

• Multiline
• Use the > character for folded style (newlines become spaces)
• Use | for literal style (newlines are preserved)

• Comments
• Use # to add comments
• Everything after # on that line is a comment.

• More here: 
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.ht
ml#yaml-syntax

YAML Overview: Strings and comments

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html


YAML Overview: Document Start/End

Document Start

Key-Value Pair

List Elements

List Property



General Playbook Structure

Ansible Playbooks



• A playbook orchestrates multiple 
plays, defining the broader 
automation workflow.
• A play is a collection of tasks 

executed on a group of hosts.
• A task uses a module to execute that 

action with specific parameters.
• A module is a tool that performs a 

specific action.

Modules, Tasks, Plays, Playbooks



• A playbook is a YAML file that contains one or more plays
• It provides a script-like experience, where multiple plays are executed in 

order, each with its set of tasks.
• Relationship

• The playbook is the top-level component
• It orchestrates the execution of plays, which in turn run tasks that call upon modules

Playbook



• A play is a set of tasks that will be run on a particular set of hosts in a 
sequence
• It defines which hosts from the inventory the tasks should run on and 

sets variables that can be used in the tasks.
• Relationship

• Plays organize tasks
• A single playbook can contain multiple plays, allowing for different sets of tasks to be run on 

different hosts or groups of hosts.

Play



• Tasks define a single action that will be executed on the target host
• Each task calls an Ansible module with specific arguments
• Relationship

• A task is essentially an instance of a module with specific parameters
• Multiple tasks together form the actions in a play.

Tasks



• Modules are the units of work in Ansible
• They are like command-line tools but can be run directly or through a 

playbook
• Each module is designed to accomplish a specific task, such as 

managing packages, creating users, or interacting with APIs
• Relationship

• Modules are the building blocks that tasks use to perform actions.

Modules



• Modules are the units of work in Ansible
• They are like command-line tools but can be run directly or through a 

playbook
• Each module is designed to accomplish a specific task, such as 

managing packages, creating users, or interacting with APIs
• Relationship

• Modules are the building blocks that tasks use to perform actions.

Variables



• name
• Specify play name
• Important for identify on logs

• hosts
• Specifies which hosts the tasks will run on
• Can target individual hosts, groups, or patterns

• tasks
• A list of tasks to execute in order
• Each task calls an Ansible module.

Basic Play Structure



Basic Playbook



• Plays
• In a playbook, plays are executed sequentially
• If you have multiple plays in a playbook, the first play will run to completion on all targeted 

hosts before the second play starts, and so on

• Tasks
• Within a play, tasks are also executed sequentially
• The first task will run on all targeted hosts before the second task starts, and so on
• Inside one task, several hosts run on parallel 

Sequential Execution



• You can define them directly on the playbook, using group variables or 
host variables
• To reference a variable you may user the format {{ var_name }}
• Ansible already have some built-in variables that can grant you some 

context variables
• inventory_hostname
• hostvars
• ansible_play_name

• Complete list: 
https://docs.ansible.com/ansible/latest/reference_appendices/special_v
ariables.html

Variables

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html


• name: 
• A human-readable description of the task

• Module
• The action to be taken, using an Ansible module
• This parameter uses the module name directly

• args/vars
• Arguments or parameters for the module

Tasks Structure



Playbook with 
Variables



• Using ansible-playbook command

Execute Playbook



• Same as ad-hoc commands
• -i or --inventory: Specify the location of the inventory file
• -u or --user: Define the remote user to execute tasks as. By default, it uses 

the current user
• -k: Ask for SSH password instead of using key-based authentication
• -b or --become: Allows privilege escalation (e.g., using sudo). Useful if 

tasks need root privileges
• --ask-become-pass or -K: Ask for privilege escalation password (e.g., 

sudo password)
• -v to -vvvv: Increase verbosity. More "v"s give more detailed output
• --check or -C: Run in check mode. Ansible will not make any changes 

on the hosts, but will simulate the execution to show what would have 
changed

Common Options



• Using ansible-playbook command with –C flag allow you to run on 
dry-run mode
• This mode don’t so any change but can list you all possible changes

if you really execute the playbook

Execute Playbook with DryRun



Run your First Playbook

Demo



Idempotent Playbooks

Ansible Playbooks



• Writing idempotent tasks is a fundamental principle in Ansible 
• Ensures that running your playbook multiple times doesn't change the 

system state after the first run, unless the system state has changed in 
the meantime
• A task is idempotent if it can be applied multiple times without 

changing the result beyond the initial application
• Ensures consistency, avoids unintended side-effects, and makes 

playbooks safe to run repeatedly

Understanding Idempotency



• In an imperative approach, you specify how to achieve a particular 
state, detailing each step
• Concentrates on the process and sequence of operations to achieve 

the desired result
• Offers more control and can be more flexible in certain scenarios, as 

you dictate the exact sequence of operations.
• Example: Traditional shell scripts or batch scripts where you list each 

command to run in sequence are imperative.

Imperative Configuration



• In a declarative approach, you specify what you want the system to 
look like, not how to achieve that state
• Concentrates on the desired end state
• The system or tool figures out the necessary steps to reach that state
• Often simpler and more readable, as you don't need to specify every 

step
• Reduces the chance of errors since the tool handles the process.
• Example: Ansible playbooks, Terraform configurations, and Kubernetes 

manifests are primarily declarative

Declarative Configuration



• Clarity vs. Control
• Declarative configurations are often clearer and more concise, focusing on the "what”
• Imperative configurations give more control by focusing on the "how"

• Tool Responsibility
• In declarative configurations, the tool is responsible for figuring out how to achieve the desired state, 

reducing potential errors
• In imperative configurations, the responsibility lies more with the developer or operator

• Flexibility
• While declarative tools are designed for specific use cases (e.g., Ansible for configuration 

management), imperative approaches can be more flexible and can handle a wider range of tasks

• Learning Curve
• Declarative tools might have a steeper initial learning curve as users need to understand the tool's 

conventions and capabilities
• Imperative approaches, being more manual, might be more intuitive initially but can become 

complex as tasks grow

Declarative vs Imperative



• Commands like shell or command are not inherently idempotent
• If you must use them, ensure idempotency by adding conditions
• Most Ansible modules are designed to be idempotent
• Always prefer using a module over running raw commands
• For example, use the file module to manage files instead of raw shell or 

command tasks.

Use Ansible Modules Properly



• Run playbooks with --check (check mode) to see what changes 
would be made without actually applying them
• A truly idempotent task will not report changes on subsequent runs 

unless the system state has changed

Test with Check Mode



• Non-idempotent way

• Idempotent way

Non-idempotent vs Idenpontent way



Commonly used Modules

Ansible Playbooks



• Manage user accounts: 
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/us
er_module.html

User Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html


• Manage group accounts:
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/gr
oup_module.html

Group Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html


• Manage yum packages: 
ansible.builtin.yum module –
Manages packages with the 
yum package manager —
Ansible Documentation

• You can find modules for 
several package managers

Yum Module (Package management)

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html


• Manage services: 
https://docs.ansible.com/ansibl
e/latest/collections/ansible/buil
tin/service_module.html

Service Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html


• Copies files from the local to a 
location on the remote machine
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/co
py_module.html#ansible-
collections-ansible-builtin-copy-
module

Copy Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html


• Manages file properties
• https://docs.ansible.com/ansible/l

atest/collections/ansible/builtin/fil
e_module.html#ansible-
collections-ansible-builtin-file-
module

File Module

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html


Task Results

Ansible Playbooks



• Every time you execute a task, you get a result
• Possible results

• OK
• Changed
• Failed
• Skipped
• Unreachable

Task Results



• The task executed successfully
• The module ran without any errors, and the desired state expressed in 

the task is already in place on the target system
• In other words, the system was already in the desired state, so no 

changes were made.
• Example: If you have a task to ensure a package is installed, and the 

package is already installed, the task result will be "OK".

Task Results: OK



• The task executed successfully and made changes to the target system
• The module ran without any errors, and the system was not initially in 

the desired state, so Ansible made the necessary changes to bring the 
system to that state.
• Example: If you have a task to ensure a package is installed, and the 

package was not initially installed, Ansible will install it, and the task 
result will be "changed".

Task Results: Changed



• The task did not execute successfully and encountered an error.
• An error occurred that prevented the module from completing its 

operation. 
• This could be due to various reasons like incorrect parameters, issues 

on the target system, unreachable hosts, etc.
• Example: If you have a task to ensure a package is installed, but there's 

an issue with the package repository or network connectivity, the task 
might fail to install the package, resulting in a "failed" state.

Task Results: Failed



• The task was intentionally not executed on a particular host
• Tasks can be conditionally executed based on the evaluation of a when 

clause
• If the condition in the when clause evaluates to false, the task will be 

skipped for that host
• Example: If you run the following task on a RedHat system, the result 

will be ”Skipped”

Task Results: Skipped



• Ansible was unable to establish a connection to the target host
• This state typically indicates a fundamental communication issue 

between the Ansible control node and the target host
• Common reasons include network connectivity problems, incorrect SSH 

configurations, SSH key mismatches, host firewalls blocking access, or 
the target host being down
• When a host is in an "Unreachable" state, Ansible will not attempt any 

further tasks on that host for the duration of the playbook run

Task Results: Unreachable



Validating the Result

Ansible Playbooks



• You may validate the results of a task and use that results on following 
tasks
• Usually, you start to save task output to a variable
• Then you may use variable content on other tasks to print values or 

decide about task execution

Validating Results



• Use the register keyword to save the output of a task to a variable

• Then you can use variable attributes as a common variable
• Each task (module) will add specific attributes
• Common attributes include
• command_output.stdout: The standard output of the command
• command_output.stderr: The standard error of the command
• command_output.rc: The return code of the command
• command_output.changed: Boolean indicating if the task made changes

Getting task output



• Print messages, variables, or task results for debugging purposes

Debugging outputs



• Customize when Ansible should consider a task as failed using the 
failed_when keyword.

Handling Failures Manually



Use Task Results

Demo




