
Deep Dive Playbooks

Ansible Training



Agenda

• Lookups
• Conditions
• Loops
• Loops with Conditions
• Sequential vs Parallel Execution
• Multiplay files
• Tags
• Import



Agenda

• Ansible Facts
• Custom facts
• Conditionals
• Loops



Ansible Facts

Deep Dive Playbooks



Ansible Facts

• Facts in Ansible are essentially global variables that contain information 
about the system, like network interfaces or operating system
• They are derived from the host's system and environment
• Facts can be used in playbooks to make decisions, tailor configurations, 

or generate reports



Facts Gathering

• When you run a playbook, Ansible starts by gathering facts from the 
target system
• Once gathered, facts are stored in memory and can be referenced 

throughout the playbook
• Users can also define custom facts using local scripts on the target 

machine



Built-in Facts

• ansible_architecture: The architecture of the system (e.g., 
x86_64).
• ansible_default_ipv4: Information about the default IPv4 

network interface.
• ansible_distribution: The name of the distribution (e.g., 

Ubuntu, CentOS).
• ansible_distribution_version: The version of the distribution 

(e.g., 18.04, 7).
• ansible_hostname: The hostname of the system.
• ansible_interfaces: A list of network interfaces on the system.
• ansible_processor_vcpus: The number of virtual CPUs.



Built-in Facts

• ansible_virtualization_type: The type of virtualization (e.g., 
kvm, qemu, vmware).
• ansible_uptime: System uptime.
• ansible_users: A list of user accounts on the system.
• ansible_env: Environment variables of the user executing Ansible.
• ansible_mounts: Information about mounted filesystems.
• ansible_lsb: Output of the lsb_release command if available.



How to Use Facts

• You can use facts on a similar way as you use varibales
• All facts are stores on an array named ansible_facts



Turn Off Fact Gathering

• If your playbook don’t need any fact you can turn it off
• In your playbook, you can set the gather_facts parameter to no



Why Turn Off Fact Gathering

• Performance: Gathering facts can add overhead, especially when 
managing a large number of hosts. If facts aren't needed, disabling can 
speed up playbook execution
• Irrelevance: If your tasks don't depend on system-specific information, 

you can skip fact gathering
• Custom Facts Only: If you're only interested in a subset of facts or 

custom facts, you can gather those specifically and skip the default 
ones.
• Avoiding Errors: In some rare cases, the setup module might 

encounter errors on certain systems or configurations. Disabling fact 
gathering can be a temporary workaround.



Custom Facts

Deep Dive Playbooks



Custom Facts

• Custom facts in Ansible allow you to define and gather your own set of 
information from target systems, beyond the default facts that Ansible 
provides
• This can be particularly useful when you need to capture specific details 

about a system that aren't covered by the built-in facts



Custom Facts

• Custom facts are typically defined using scripts or static files placed in a 
specific directory on the target system.
• The default directory for custom facts is /etc/ansible/facts.d.
• Scripts can be written in any language but must be executable and 

return JSON output.
• Static .fact files can also be used, where each line is a key-value pair.



Gathering Custom Facts

• Using the setup Module 
• When you run the setup module (either implicitly at the start of a playbook or explicitly as a 

task), Ansible will automatically check the default directory (/etc/ansible/facts.d) for 
any custom fact scripts or files

• Once gathered, custom facts can be accessed in the same way as built-
in facts, using the ansible_facts variable.
• For example: ansible_facts['ansible_local']['custom_fact_1']

• Specifying a Different Directory
• If you store custom facts in a directory other than the default, you can specify the directory 

using the fact_path parameter with the setup module:



Benefits Custom Facts

• Flexibility: Capture specific details tailored to your environment or 
application
• Automation: Use custom facts to drive conditional logic in your 

playbooks
• Reporting: Gather and report on specific metrics or configurations 

across your infrastructure



Considerations

• Performance: Ensure that custom fact scripts are efficient, especially if 
you have a large number of hosts
• Security: Be cautious about the information you capture and expose as 

custom facts, especially if sensitive



Gather Custom Facts

Demo



Conditionals

Deep Dive Playbooks



Conditionals

• Conditionals in Ansible allow you to control the execution of tasks based on 
specific criteria
• They are essential for creating dynamic and adaptive playbooks
• when Clause: The primary mechanism for conditionals in Ansible is the when

keyword
• It determines if a task should be executed or skipped based on the 

evaluation of an expression
• You can use logical operators like and, or, and not to combine multiple 

conditions
• You can conditionally execute tasks based on the group membership of the 

target host
• Ansible facts, gathered using the setup module, can be used in conditionals 

to make decisions based on system characteristics.



Basic Conditional

• Execute a task only if a variable is defined



Multiple Conditions

• Execute a task based on multiple criteria using and.



Group-based Conditional

• Execute a task only if the target host is a member of a specific group.



Fact-based Conditional

• Execute a task based on a system fact.



• Use the when keyword to conditionally execute tasks based on the 
result of a previous task

Task Results used in conditionals



Conditional with Failed Task

• Retry a task if it fails



• Customize when Ansible should consider a task as failed using the 
failed_when keyword.

Handling Failures Manually



Handling Failures Manually



Additional tips

• Using | bool: 
• When evaluating a condition that's expected to be a boolean, it's a good practice to use the 

bool filter, e.g., when: some_var | bool.

• changed and failed
• After a task is executed, Ansible provides changed and failed attributes that can be used in 

subsequent conditionals.

• failed_when
• This allows you to define custom failure conditions for a task based on its output.



Playbook with 
Conditional Tasks



Loops

Deep Dive Playbooks



Loops

• Loops in Ansible allow you to iterate over a set of items and execute 
tasks multiple times based on those items
• They are essential for reducing code repetition and making playbooks 

more dynamic.
• Types of Loops in Ansible

• Simple Loops: The basic loop structure, often used with lists.
• Looping over Subelements: Useful for nested data structures.
• Looping over Dictionary: Iterating over key-value pairs.
• Looping over Files: Iterating over files in a directory.
• Looping over Command Output: Using the result of a command as loop items.
• Looping with Index: Accessing the current item's index during the loop



Simple Loop

• Install multiple packages using a list.



Iterating over a list of hashes

• If you have a list of hashes, you can reference subkeys in a loop



Iterate over task result



Looping over Dictionary

• Add multiple users with specific attributes



Looping Using Facts

• Conditional Execution: If you want to apply certain tasks only for a 
specific OS

• Dynamic Configuration: Using facts to tailor configurations:



Control your loop

• You can use loop_control property to manage some behavior of 
your loop
• loop_var

• Allows you to set a different name for the loop variable instead of the default item

• index_var
• Provides the current iteration's index

• pause
• Adds a delay (in seconds) between loop iterations.

• end and start (used together):
• Control the start and end index for slicing the loop.



Loop control example

• To keep track of where you are in a loop, use the index_var directive 
with loop_control
• This directive specifies a variable name to contain the current loop 

index.



Loops with Conditionals

Deep Dive Playbooks



Loops with conditionals

• Combining loops with conditionals in Ansible allows for powerful and 
dynamic playbook execution
• You can iterate over a set of items and conditionally decide whether to 

execute a task for each item based on specific criteria



Loops with when condition

• Define a when property within your loop to define a condition where 
an item should be considered or not
• This instruction allow you to control the items to be considered on the 

loop
• Makes your loop and playbook dynamic and based on any dynamic 

condition
• You may use any property that you may use on a simple conditional



Loops with when condition



until loop control

• The until keyword in Ansible allows you to retry a task until a certain 
condition is met
• It's often used in conjunction with the retries and delay

parameters to define how many times a task should be retried and the 
delay between retries



Wait for service to start



Wait for a URL to Respond



Wait for a File to Exist



Demo: Loops & Conditions

Deep Dive Playbooks



Multiplays and Parallel Execution

Deep Dive Playbooks



• Simplicity
• Easier to read and understand, especially for newcomers or for quick tasks.

• Specificity
• Ideal for focused tasks or roles, such as deploying a single application or configuring a specific 

service.

• Modularity
• Can be easily included or imported into other playbooks or roles, promoting reusability.

• Clear Execution
• With only one play, there's a clear start and end, reducing potential confusion.

Single-Play Playbook



• Organization
• Allows for structuring complex workflows in a single file, with each play handling a specific part 

of the process.

• Sequential Operations
• Useful when operations on one group of hosts depend on operations on another group
• For example, setting up a database server before deploying an application that uses that 

database.

• Conditional Execution
• Different plays can be conditionally executed based on the results of previous plays or external 

factors.
• Parallelism

• Ansible can run tasks on multiple hosts in parallel. 
• By grouping hosts in different plays, you can achieve efficient parallel execution while 

maintaining a specific order where needed.

Multi-Play Playbook



• Plays
• In a playbook, plays are executed sequentially
• If you have multiple plays in a playbook, the first play will run to completion on all targeted 

hosts before the second play starts, and so on

• Tasks
• Within a play, tasks are also executed sequentially
• The first task will run on all targeted hosts before the second task starts, and so on

Sequential Execution



• Hosts
• While tasks are executed sequentially in the order they are defined, the tasks themselves run in 

parallel across all targeted hosts.
• For example, if you have a task to install a package and you target 10 hosts, Ansible will (by 

default) try to install the package on all 10 hosts at the same time.

• Forks
• The degree of parallelism is controlled by the forks configuration. 
• The default is usually 5, meaning Ansible will run operations on 5 hosts simultaneously
• Once one host completes, Ansible will start the operation on the next host. 
• You can adjust this number in the ansible.cfg file or by using the -f or --forks

command-line parameter
• Setting a higher forks value will increase parallelism, but also requires more resources on the 

control machine

Parallel Execution



• Serial
• If you want to control the 

number of hosts executing a 
task simultaneously, you can 
use the serial keyword in 
your play

• For example, serial: 2 
would mean that the play is 
executed on 2 hosts at a 
time. Only after both have 
completion you start another 
2

• This is useful for rolling 
updates or when you don't 
want to impact all hosts at 
once.

Controlling Execution



Demo: Multiplays

Deep Dive Playbooks



Handlers

Deep Dive Playbooks



• Purpose: Handlers are tasks that only run when notified by another 
task. They are triggered by a "notify" directive in a task
• Idempotency: Just like regular tasks in Ansible, handlers are 

idempotent. This means they will only run if the state of the system 
changes. If no changes are made, the handler won't be triggered
• Order of Execution: Handlers run after all tasks are completed in a 

particular play, not immediately after the task that notified them
• If multiple tasks notify the same handler, the handler will run only once, 

after all tasks are completed

What are handlers?



• The handler only runs if the task that notifies the handler returns a 
CHANGED result
• You can force a task to return CHANGED result causing handler 

execution
• To force you may use a property named changed_when: 
<condition>

Handlers



• Running a command that can be triggered by several tasks
• Restarting a service after its configuration file has been modified
• Reloading a service after a new package has been installed
• Any scenario where a specific action should only be taken in response 

to a change
• Can be used for error handling 

Common use cases



• Handler Naming: Handlers are identified by their name, so the name 
specified in the notify directive must match the name of the handler.
• Order Matters: If you have multiple handlers, you can control the order 

in which they run using the listen directive. Handlers that listen to 
the same label will be executed in the order they are defined.
• Flushing Handlers: If you want to force all notified handlers to run 

immediately, rather than waiting until the end of the play, you can use 
the meta: flush_handlers task.

Considerations



• Handlers can have conditions using the when keyword
• This allows you to control when a handler is executed based on specific 

conditions, such as changes to a particular file or system state.
• Handlers are typically used to react to changes made during a 

playbook run
• For instance, if a configuration file is modified, a handler can be notified 

to restart the associated service

Handlers



Handlers



Demo: Handlers

Deep Dive Playbooks



Lookups Plugins

Deep Dive Playbooks



Lookup

• Lookups in Ansible are a way to query data from outside sources, 
allowing you to access and use this data within your playbooks
• Lookup plugins facilitate these queries
• Lookups allow you to pull in data from external sources into your 

Ansible playbooks
• This can be from a file, a database, a key-value store, an environment 

variable, and more.
• Usual format: 



Lookup Plugins

• Lookup plugins are the backend mechanisms that power the lookup 
functionality. 
• Ansible comes with a variety of built-in lookup plugins, and you can 

also create custom ones if needed
• You may get a list of available plugins

• And you may get more detail about each plugin



Common Lookup Plugins

• file: Reads the contents of a file.

• env: Reads the value of an environment variable

• password: Generates random passwords, often used for creating user 
accounts.



Common Lookup Plugins

• pipe: Executes a command and returns its output.

• ini: Fetches a specific key's value from an INI file.

• redis_kv: Fetches values from a Redis database.



Enhance Loops

• Lookups can be combined with loops to iterate over returned data
• For instance, using the fileglob lookup to loop over files:



Demo: Lookups

Deep Dive Playbooks



Tags

Deep Dive Playbooks



Tags

• Tags in Ansible playbooks are a powerful feature that provides 
granularity in playbook execution
• They allow you to run specific parts of a playbook without executing 

the entire set of tasks
• Selective Execution

• Tags allow you to run specific tasks within a playbook, rather than executing everything
• This is especially useful in large playbooks where you only want to run a subset of tasks
• For example, if you have a playbook that configures a web server, database server, and firewall, 

you could use tags to only apply the firewall configurations without touching the web or 
database configurations



Why Using Tags

• Efficiency
• Running a full playbook can be time-consuming
• By using tags, you can significantly reduce the execution time by only running the tasks that are 

necessary for a particular change or update
• This is especially beneficial in production environments where minimizing changes and 

disruptions is crucial

• Organization
• Tags can serve as documentation, indicating the purpose or category of each task or set of 

tasks
• They help in organizing playbooks and roles, making them more readable and maintainable



Why Using Tags

• Staging & Phased Rollouts
• In complex deployments, you might want to stage or phase the rollout of changes
• Tags allow you to break down the deployment process into stages, executing each stage 

separately.
• For instance, in a software deployment, you might have tags like pre-deploy, deploy, and post-

deploy to manage the deployment lifecycle.

• Flexibility
• Tags offer flexibility in both development and operations. During development, you can use 

tags to test specific tasks without running the entire playbook.
• In operations, tags allow ops teams to adapt to different scenarios, such as only running 

monitoring-related tasks or backup-related tasks as needed.



Usage

• Define tags on your playbook

• Then use your command to execute or skip tags



Demo: Tags

Deep Dive Playbooks



Import

Deep Dive Playbooks



Import

• In Ansible, the ability to import playbooks, tasks, or variables is crucial 
for creating modular, reusable, and maintainable automation code
• The import functionality allows users to break down complex 

automation tasks into smaller, more manageable pieces



Why use Import feature

• Modularity
• By using import, you can break down large playbooks into smaller, more focused pieces
• This modular approach makes it easier to understand, maintain, and update the automation code
• For instance, instead of having a single monolithic playbook for setting up an entire application stack, 

you can have separate playbooks for the database, web server, and application logic, and then 
import them as needed

• Reusability
• Once you've created a playbook, or task list, you can reuse it in multiple scenarios or projects by 

importing it
• This reduces redundancy and ensures consistency across your automation tasks
• For example, if you have a common set of tasks for basic server hardening, you can import those 

tasks into any playbook that sets up servers
• Maintainability

• Smaller, modular pieces of code are easier to maintain
• If a change is required, you can update the specific imported file without touching the main 

playbook or other unrelated tasks
• This also makes it easier to track changes, troubleshoot issues, and understand the impact of 

modifications



Why use Import feature

• Collaboration
• In team environments, different team members can work on separate pieces of the automation 

process
• These pieces can then be imported into a main playbook, facilitating collaboration and parallel 

development
• Dynamic Inclusion

• While import provides static inclusion (the imported tasks, playbooks, or roles are determined at 
playbook parsing time), it can be combined with variables to create dynamic paths, allowing for 
more flexible automation structures

• Organized Codebase
• Using import helps in organizing the Ansible codebase
• You can have a directory structure where related tasks, roles, or playbooks are grouped together, 

making it easier to navigate and manage the code
• Conditional Execution

• You can combine import with conditionals (when clause) to determine whether to include certain 
tasks or playbooks based on specific conditions

• This allows for adaptive playbook execution



Example: Import Tasks

• Directory structure

• main.yml



Example: Import Tasks

• install_packages.yml

• setup_firewall.yml



Example: Import Playbooks

• Directory structure

• orchestrate.yml



Demo: Import

Demo




