
Ansible Roles

Ansible Advanced



Agenda
• Ansible Roles
• Using Roles
• Ansible Galaxy
• Sharing Roles
• Authoring Roles



Ansible Roles

Ansible Advanced



What are Ansible Roles

• Ansible role is a pre-defined structure for organizing automation tasks 
in a way that allows for code reuse, ease of testing, and modular 
organization
• Roles encapsulate a specific piece of functionality or configuration, 

making it easier to drop that functionality into multiple playbooks or 
share with other users
• They are a key aspect of Ansible's playbook organization, enabling the 

reuse of code and modularization of configuration tasks
• These building blocks are easily shared using Ansible Galaxy



Benefits

• Modularity
• Roles allow you to break down complex playbooks into smaller, reusable components
• Each role focuses on a specific task or service, making it easier to understand and manage.

• Reusability
• Once you've created a role, you can reuse it across multiple playbooks or even different projects
• This reduces duplication and ensures consistency across your infrastructure.

• Sharing and Collaboration
• Roles can be easily shared with others, either within your organization or with the broader community through 

platforms like Ansible Galaxy
• This promotes collaboration and allows teams to benefit from the work of others.

• Version Control
• Roles can be versioned, allowing you to track changes over time, roll back to previous versions if needed, and 

ensure that you're always using the correct version of a role.
• Separation of Concerns

• By encapsulating specific functionalities into roles, you can separate the logic of your configuration from the data
• This means you can use the same role in different environments (e.g., staging, production) with different 

variables.



Benefits

• Testing
• Roles can be individually tested, ensuring that a specific piece of functionality works as expected
• Tools like Molecule can be used to test roles in isolation, improving the reliability of your automation.

• Organization
• Roles provide a standardized directory structure, making it easier to find where specific tasks, templates, files, 

and variables are defined
• This structure improves readability and maintainability.

• Flexibility
• Roles can be conditionally included or excluded in playbooks, and they can also depend on other roles
• This allows for the creation of layered and flexible automation workflows.

• Role Dependencies
• Roles can have dependencies on other roles, ensuring that prerequisites are always met
• For example, a role that configures a web application might depend on another role that installs and configures 

the web server.
• Isolation

• If a role is updated or modified, it won't affect other roles or playbooks unless they specifically depend on it
• This isolation reduces the risk of unintended side effects when making changes



How to use Roles

• First step is to get role files to execute on your playbook
• The default way to get files is to integrate with Ansible Galaxy
• After downloading the role you can use it directly on your playbook, 

like a task or a handler
• After we’ll check how to author your own role and check that we can 

host the role in different places



Where Ansible search for Roles

• Ansible will use the following list in that sequence to try to find a role to 
be used

1. In a directory called roles/, relative to the playbook file
2. In the configured roles_path. The default paths are:

• ~/.ansible/roles
• /usr/share/ansible/roles
• /etc/ansible/roles

3. In the directory where the playbook file is located



Ansible Galaxy

Ansible Advanced



Ansible Galaxy

• Ansible Galaxy is a community hub for sharing and discovering Ansible 
roles and collections
• It provides a centralized platform for Ansible users to find reusable 

content and contribute their own
• Interacting with Galaxy:

• Web Interface: Accessible at https://galaxy.ansible.com, where you can search, download, and 
rate roles/collections.

• CLI: Ansible Galaxy has a command-line interface bundled with Ansible, accessed using ansible-
galaxy.

https://galaxy.ansible.com/


Authentication

• Ansible Galaxy uses GitHub for authentication
• Users need a GitHub account to log in to Ansible Galaxy
• When you first log in to Galaxy via the web interface, you'll be asked to 

authorize the application with GitHub, granting access to your public 
repositories.



Ansible Collections

• Collections are a newer concept in Ansible and provide a more flexible 
and powerful way to organize and distribute content
• Collections can contain roles, modules, plugins, playbooks, and other 

content types
• Collections allow for better organization and distribution of content 

beyond just roles, making it easier to share and reuse Ansible content
• Collections are versioned, making it easier to manage dependencies 

and ensure consistency across different environments



Demo: Review Ansible Galaxy

Ansible Advanced



ansible-galaxy CLI

• To interact with Ansible Galaxy you should use ansible-galaxy
command
• This command allow you to interact both with collections and roles
• Every command should follow the following structure



ansible-galaxy CLI

• Install a role

• Remove a role



ansible-galaxy CLI

• Search for a role

• List locally available roles



Using Roles

Ansible Advanced



Role structure

• defaults/: Default variables for the role. These have 
the lowest priority

• files/: Contains files that the role can deploy onto the 
target system

• handlers/: Contains handlers, which are tasks that 
respond to a "notify" directive from other tasks

• meta/: Contains metadata about the role, such as role 
dependencies.

• tasks/: This directory contains the main list of tasks 
that the role will execute.

• templates/: Contains template files, which use the 
Jinja2 templating engine, and can be deployed using the 
template module

• tests/: Contains files for testing the role, often using 
tools like Molecule or simple playbooks.

• vars/: Variables for the role with higher priority than 
defaults.



Role Dependencies

• Role dependencies let you automatically pull in other roles when using 
a role
• Role dependencies are prerequisites, not true dependencies
• The roles do not have a parent/child relationship
• Ansible loads all listed roles, runs the roles listed under dependencies 

first, then runs the role that lists them



Role Dependencies - Example

• If you list role role1 under roles:, on your playbook
• The role role1 lists role role2 under dependencies in its 
meta/main.yml file
• The role role2 lists role role3 under dependencies in its 
meta/main.yml
• Ansible executes role3, then role2, then role1.



Install roles

• You can install directly using CLI command

• Or, using a requirements.yml listing all your dependencies



Demo: Using roles

Ansible Advanced



Execution order

• You can have roles, tasks and handlers on your playbook following this 
order:

1. Each role listed in roles: in the order listed. 
2. Any tasks defined in the play.
3. Any handlers triggered by the roles or tasks.

• Roles execution follows the same parallelism strategy as the tasks



Use same role with different variables

• Every role have a set of variables (with 
defaults)
• Depending the variables value on your 

playbook, you can get different outcome
• Variables values to send to role can be set as 

playbook variables or directly on role block in 
playbook



Conditional execution

• You may execute your role based on a condition
• For the condition, you may follow all rules defined for conditional on 

playbook tasks



Authoring Roles

Ansible Advanced



Role directory structure

• defaults/: Default variables for the role. These have 
the lowest priority

• files/: Contains files that the role can deploy onto the 
target system

• handlers/: Contains handlers, which are tasks that 
respond to a "notify" directive from other tasks

• meta/: Contains metadata about the role, such as role 
dependencies.

• tasks/: This directory contains the main list of tasks 
that the role will execute.

• templates/: Contains template files, which use the 
Jinja2 templating engine, and can be deployed using the 
template module

• tests/: Contains files for testing the role, often using 
tools like Molecule or simple playbooks.

• vars/: Variables for the role with higher priority than 
defaults.



defaults folder

• This directory and file are intended for defining default variables for the role
• Variables set in defaults are the most "default" or the least priority in the 

hierarchy of variable precedence
• This means that these values are easily overridden by almost any other 

method of setting variables.
• Use defaults for variables that you expect users of the role to frequently 

override
• These are typically parameters that customize the role's behavior but have 

sensible defaults that work out of the box for most users
• For instance, a role that installs and configures a web server might have the 

HTTP port as a default variable, assuming the standard port 80 but allowing 
users to change it if needed



vars folder

• The vars directory is for variables that should not be easily overridden
• Variables defined in vars/main.yml have a higher precedence than those 

in defaults and most other variable sources, except for inventory 
variables set at the host level, playbook variables, command-line variables, 
and a few others
• vars are suitable for variables that are essential to the role's operations and 

should only be overridden in specific circumstances
• These might include variables that depend on the system's architecture, 

paths to specific system resources, or values critical to the role's internal 
logic.
• For example, a role might use a variable in vars to define the path to a 

software binary that is expected to be the same across all deployments 
where the role is applicable.



Create directory structure

• Ansible Galaxy help you creating role directory structure

• This command automatically creates all folders and empty YAML files 
inside that folders



Author your code

• Now you can start to edit the generated files
• Some considerations

• File meta/main.yml, you should specify role dependencies but you should add additional
details like role version, author, etc.

• File README.md contains a template to document role. This information is crucial if you want
to share your role

• Mandatory files to be changed are defaults and tasks. Defaults to define your role 
parameters and tasks to define your role execution



Demo: Using custom role

Ansible Advanced



Sharing Roles

Ansible Advanced



Sharing Roles

• Ansible Galaxy is the usual way to share roles but make them public
• If you want to share privately you only need a git repository
• You can reference roles using folder path only but using git repository 

is the recommended way



Reference private role

• Create a requirements.yml with following content

• Then install your role like a Ansible Galaxy Role



Version Property

• version property on Git repository properties allow you to run and 
test different versions off the same role
• This property can assume 3 different meanings:
1. Branch name, getting last commit from that branch
2. Git Tag, using that specific tag 
3. Commit SHA, using a specific commit in any branch



Demo: Using custom role

Ansible Advanced



Lab: Author your role

Ansible Advanced




