Ansible Roles

Ansible Advanced

* Ansible Roles

* Using Roles

* Ansible Galaxy
* Sharing Roles
 Authoring Roles

Ansible Roles

Ansible Advanced

What are Ansible Roles

 Ansible role is a pre-defined structure for organizing automation tasks
in a way that allows for code reuse, ease of testing, and modular
organization

* Roles encapsulate a specific piece of functionality or configuration,
making it easier to drop that functionality into multiple playbooks or
share with other users

* They are a key aspect of Ansible's playbook organization, enabling the
reuse of code and modularization of configuration tasks

* These building blocks are easily shared using Ansible Galaxy

Benefits

Modularity

* Roles allow you to break down complex playbooks into smaller, reusable components
» Each role focuses on a specific task or service, making it easier to understand and manage.

Reusability

» Once you've created a role, you can reuse it across multiple playbooks or even different projects
* This reduces duplication and ensures consistency across your infrastructure.

Sharing and Collaboration

+ Roles can be easily shared with others, either within your organization or with the broader community through
platforms like Ansible Galaxy

 This promotes collaboration and allows teams to benefit from the work of others.

e \ersion Control

* Roles can be versioned, allowing you to track changes over time, roll back to previous versions if needed, and
ensure that you're always using the correct version of a role.

Separation of Concerns

By encapsulating specific functionalities into roles, you can separate the logic of your configuration from the data

* This rkr;'eans you can use the same role in different environments (e.qg., staging, production) with different
variables.

Benefits

Testing

» Roles can be individually tested, ensuring that a specific piece of functionality works as expected
* Tools like Molecule can be used to test roles in isolation, improving the reliability of your automation.

Organization

» Roles provide a standardized directory structure, making it easier to find where specific tasks, templates, files,
and variables are defined

* This structure improves readability and maintainability.

Flexibility
* Roles can be conditionally included or excluded in playbooks, and they can also depend on other roles
« This allows for the creation of layered and flexible automation workflows.

Role Dependencies
» Roles can have dependencies on other roles, ensuring that prerequisites are always met

» For example, a role that configures a web application might depend on another role that installs and configures
the web server.

solation
 If arole is updated or modified, it won't affect other roles or playbooks unless they specifically depend on it
« This isolation reduces the risk of unintended side effects when making changes

How to use Roles

* First step is to get role files to execute on your playbook

 The default way to get files is to integrate with Ansible Galaxy

* After downloading the role you can use it directly on your playbook,
like a task or a handler

* After we'll check how to author your own role and check that we can
host the role in different places

Where Ansible search for Roles

* Ansible will use the following list in that sequence to try to find a role to
be used

1. In adirectory called roles/, relative to the playbook file
2. Inthe configured roles_path. The default paths are:

« ~/.ansible/roles
« /usr/share/ansible/roles
« /etc/ansible/roles

3. In the directory where the playbook file is located

Ansible Galaxy

Ansible Advanced

Ansible Galaxy

* Ansible Galaxy is a community hub for sharing and discovering Ansible
roles and collections

* [t provides a centralized platform for Ansible users to find reusable
content and contribute their own

* Interacting with Galaxy:

« Web Interface: Accessible at https://galaxy.ansible.com, where you can search, download, and
rate roles/collections.

« CLI: Ansible Galaxy has a command-line interface bundled with Ansible, accessed using ansible-
galaxy.

https://galaxy.ansible.com/

Authentication

* Ansible Galaxy uses GitHub for authentication
* Users need a GitHub account to log in to Ansible Galaxy

* When you first log in to Galaxy via the web interface, you'll be asked to

authorize the application with GitHub, granting access to your public
repositories.

Ansible Collections

* Collections are a newer concept in Ansible and provide a more flexible
and powertful way to organize and distribute content

* Collections can contain roles, modules, plugins, playbooks, and other
content types

* Collections allow for better organization and distribution of content
beyond just roles, making it easier to share and reuse Ansible content

* Collections are versioned, making it easier to manage dependencies
and ensure consistency across different environments

Demo: Review Ansible Galaxy

Ansible Advanced

ansible-galaxy CLI

* To interact with Ansible Galaxy you should use ansible—galaxy
command

* This command allow you to interact both with collections and roles
 Every command should follow the following structure

$ ansible-galaxy role <COMMAND>

$ ansible-galaxy collection <COMMAND>

ansible-galaxy CLI

e Install a role

$ ansible-galaxy role install <role_name>

e Remove a role

$ ansible-galaxy role remove <role_name>

ansible-galaxy CLI

e Search for a role

$ ansible-galaxy role search <role_name>

* List locally available roles

$ ansible-galaxy role list

Using Roles

Ansible Advanced

Role structure

defaults/: Default variables for the role. These have
the lowest priority

files/: Contains files that the role can deploy onto the
target system

handlers/: Contains handlers, which are tasks that
respond to a "notify" directive from other tasks

meta/: Contains metadata about the role, such as role
dependencies.

tasks/: This directory contains the main list of tasks
that the role will execute.

templates/: Contains template files, which use the
Jinja templatmp engine, and can be deployed using the
template module

tests/: Contains files for testing the role, often using
tools like Molecule or simple playbooks.

vars/: Variables for the role with higher priority than
defaults.

role _name/

I_
I
I_
I_
I
I_
I
I_
I
I_
I_
I
I
—

defaults/
— main
files/
handlers/
— main
meta/

— main
tasks/

— main
templates/
tests/

F— inventory
L— test
vars/

L— main

Role Dependencies

* Role dependencies let you automatically pull in other roles when using
a role

 Role dependencies are prerequisites, not true dependencies
* The roles do not have a parent/child relationship

» Ansible loads all listed roles, runs the roles listed under dependencies
first, then runs the role that lists them

Role Dependencies - Example

* If you list role rolel under roles:, on your playbook

* The role rolel lists role role2 under dependencies in its
meta/main.yml file

* The role role2 lists role role3 under dependencies in its
meta/main.yml

* Ansible executes role3, then role2, then rolel.

Install roles

* You can install directly using CLI commana

$ ansible-galaxy role install <ROLE_NAME>

* Or, using a requirements.yml listing all your dependencies

$ ansible-galaxy role install -r requirements.yml

Demo: Using roles

Ansible Advanced

Execution order

* You can have roles, tasks and handlers on your playbook following this
order:

1. Each role listed in roles: in the order listed.

2. Any tasks defined in the play.
3. Any handlers triggered by the roles or tasks.

* Roles execution follows the same parallelism strategy as the tasks

Use same role with different variables

* Every role have a set of variables (with

defaults)
. . - hosts: webservers

* Depending the variables value on your otes:
playbook, you can get different outcome - role: foo_app_instance

. vars:

» Variables values to send to role can be set as dir: '/opt/a’
playbook variables or directly on role block in e
p|aybOO|< - role: foo_app_instance

vars:
dir: '/opt/b'

app_port: 5001
tags: typeB

Conditional execution

* You may execute your role based on a condition

e For the condition, you may follow all rules defined for conditional on
playbook tasks

Authoring Roles

Ansible Advanced

Role directory structure

defaults/: Default variables for the role. These have
the lowest priority

files/: Contains files that the role can deploy onto the
target system

handlers/: Contains handlers, which are tasks that
respond to a "notify" directive from other tasks

meta/: Contains metadata about the role, such as role
dependencies.

tasks/: This directory contains the main list of tasks
that the role will execute.

templates/: Contains template files, which use the
Jinja templatmp engine, and can be deployed using the
template module

tests/: Contains files for testing the role, often using
tools like Molecule or simple playbooks.

vars/: Variables for the role with higher priority than
defaults.

role _name/
F— defaults/
| — main
F— files/
F— handlers/
| — main
F— meta/

| — main
F— tasks/

| — main
F— templates/
F— tests/

| F— inventory
| L— test

L— vars/

L— main

defaults folder

* This directory and file are intended for defining default variables for the role

* Variables set in defaults are the most "default" or the least priority in the
hierarchy of variable precedence

 This means that these values are easily overridden by almost any other
method of setting variables.

* Use defaults for variables that you expect users of the role to frequently
override

» These are typically parameters that customize the role's behavior but have
sensible defaults that work out of the box for most users

* For instance, a role that installs and configures a web server might have the
HTTP port as a default variable, assuming the standard port 80 but allowing
users to change it it needed

vars folder

 The vars directory is for variables that should not be easily overridden

« Variables defined in vars/main.yml have a higher precedence than those
in defaults and most other variable sources, except for inventory
variables set at the host level, playbook variables, command-line variables,
and a few others

e vars are suitable for variables that are essential to the role's operations and
should only be overridden in specific circumstances

* These might include variables that depend on the system's architecture,
paths to specific system resources, or values critical to the role's internal
0gicC.

 For example, a role might use a variable in vars to define the path to a
software binary that is expected to be the same across all deployments
where the role is applicable.

Create directory structure

* Ansible Galaxy help you creating role directory structure

$ ansible-galaxy role init <ROLE_NAME>

* This command automatically creates all folders and empty YAML files
inside that folders

Author your code

* Now you can start to edit the generated files

« Some considerations

 File meta/main.yml, you should specify role dependencies but you should add additional
details like role version, author, etc.

 File README .md contains a template to document role. This information is crucial if you want
to share your role

« Mandatory files to be changed are defaults and tasks. Defaults to define your role
parameters and tasks to define your role execution

Demo: Using custom role

Ansible Advanced

Sharing Roles

Ansible Advanced

Sharing Roles

* Ansible Galaxy is the usual way to share roles but make them public
e I you want to share privately you only need a git repository

* You can reference roles using folder path only but using git repository
s the recommended way

Reference private role

 Create a requirements.yml with following content

: https://github.com/tasb/ansible-role-tasb-nginx.git

: main
: tasb.nginx

 Then install your role like a Ansible Galaxy Role

$ ansible-galaxy install -r requirements.yml

Version Property

e version property on Git repository properties allow you to run and
test different versions off the same role

* This property can assume 3 different meanings:

1. Branch name, getting last commit from that branch
2. Git Tag, using that specific tag

3. Commit SHA, using a specific commit in any branch

Demo: Using custom role

Ansible Advanced

Lab: Author your role

Ansible Advanced

