
Error Handling

Ansible Advanced



Agenda
• Error Handling
• Using blocks
• Handlers and Failure
• Execution strategy



Error Handling In Practice

Error Handling



• If you get an error on a task when running on a host, Ansible's default 
behavior is to continue executing the task on the other hosts
• The task will not break for everyone just because it failed on one host
• However, the playbook execution for the failed host will be halted at 

the point of the error, and Ansible will not execute subsequent tasks on 
that specific host
• The other hosts will continue to execute the remaining tasks in the 

playbook.

How Ansible behavies with failure



• This directive allows a task to fail without stopping the entire playbook
• It's useful when you expect a task might fail and it's okay if it does.

Error Handling: ignore_errors



• Allows you to define custom conditions for what constitutes a failure
• It can be used to override the default failure conditions of a module

Error Handling: failed_when



• Another example of using failed_when to generate an error based 
on task normal output

Error Handling: failed_when



• If set to yes, any error will be considered fatal and will stop all hosts' 
execution
• Useful when you want to ensure that if any host fails, no further tasks 

should be executed on any host
• Can be used on tasks or playbook level

Error Handling: any_errors_fatal



• If you're running a task on multiple hosts, you can use this directive to 
continue execution even if a certain percentage of hosts fail
• Can be set on task or playbook level

Error Handling: max_fail_percentage



• Unreachable hosts have a different behavior from failed tasks
• If Ansible cannot connect to a host, it marks that host as 

‘UNREACHABLE’ and removes it from the list of active hosts for the run
• Using ignore_errors don’t have any effect on unreachable hosts

Unreachable hosts



• When you set ignore_unreachable: 
yes for a task or playbook, Ansible will 
not fail the playbook for that specific 
task/block if a host becomes unreachable. 
• Instead, it will ignore the unreachable 

host and continue executing the 
remaining tasks for that host, as well as 
continue executing tasks for other hosts.
• This can be useful in scenarios where 

temporary network disruptions are 
expected, and you don't want the entire 
playbook run to be affected.

Use ignore_unreachable



Demo: Error Handling

Ansible Advanced



Blocks

Error Handling



• Blocks in Ansible provide a way to group related tasks together
• You may apply particular task attributes, such as looping, conditional 

execution, and error handling, to the entire group
• They can significantly simplify playbook logic and make error handling 

more streamlined

What are Ansible blocks



• One of the most common uses of blocks is for error handling
• Blocks can be combined with rescue and always sections to define 

tasks that should be run if there's an error in the block or tasks that 
should always run regardless of success or failure

Error handling with blocks



Basic Error 
Handling



Using always for 
Cleanup Tasks



Demo: Blocks

Ansible Advanced



Handlers and Failure

Error Handling



• Handlers are tasks that only run when notified by another task
• They are triggered by a "notify" directive in a task
• Just like regular tasks in Ansible, handlers are idempotent
• Handlers run after all tasks are completed in a particular play, not 

immediately after the task that notified them
• If multiple tasks notify the same handler, the handler will run only once, 

after all tasks are completed
• The handler only runs if the task that notifies the handler returns a 
CHANGED result

What are handlers?



• Restarting a service after its configuration file has been modified
• Reloading a service after a new package has been installed
• Any scenario where a specific action should only be taken in response 

to a change
• Can be used for error handling 

Common use cases



• If a task notifies a handler but another task fails later in the play, by 
default the handler does not run on that host, which may leave the 
host in an unexpected state
• For example, a task could update a configuration file and notify a 

handler to restart some service. If a task later in the same play fails, the 
configuration file might be changed but the service will not be 
restarted.

Force handlers on error



• You can change this behavior with:
• --force-handlers command-line option
• Including force_handlers: True in a play
• Adding force_handlers = True to ansible.cfg
• When handlers are forced, Ansible will run all notified handlers on all 

hosts, even hosts with failed tasks

Force handlers on error



• Use handlers to perform specific actions in response to errors or 
failures during playbook execution
• By using blocks, you can group tasks and define error handling for the 

entire block
• If any task within the block fails, the tasks in the rescue section will 

execute
• You can notify a handler from within the rescue section to take specific 

actions in response to errors.

Handlers on Error Handling



Handlers on 
Error Handling



Demo: Handlers

Ansible Advanced



Execution Strategy

Error Handling



• The linear strategy, which is the default, ensures that each task is executed on 
all hosts before moving on to the next task.
• If you have a list of tasks and a group of hosts, Ansible will take the first task 

and execute it on all hosts, one by one (or in parallel batches if you've set a 
forks value greater than 1).
• Only after the first task is completed on all hosts will Ansible move on to the 

second task.
• Use Cases

• When you need to ensure that a particular state is set across all hosts before proceeding.
• When tasks have dependencies that need to be met on all hosts before moving on.

• Example
• If you have tasks A, B, and C and hosts 1, 2, and 3, the order of execution will be: A1, A2, A3, B1, B2, 

B3, C1, C2, C3.

Linear Execution



• The free strategy allows each host to process its list of tasks as quickly as 
possible without waiting for other hosts
• Hosts will execute their list of tasks independently and may finish at different 

times
• One host might be on task 1 while another host could be on task 3, 

depending on factors like network speed, host performance, etc.
• Use Cases:

• When you want to complete the playbook run as quickly as possible and don't have inter-host task 
dependencies.

• When working with a large number of hosts where waiting for each task to complete on every host 
would be inefficient.

• Example
• If you have tasks A, B, and C and hosts 1, 2, and 3, the order of execution could be: A1, A2, A3, B1, 

C1, B2, B3, C2, C3. Host 1 moved through all its tasks before Host 2 completed its second task.

Free Execution



Comparison

•linear: Ensures a strict order of task execution across all hosts.
•free: Allows hosts to process tasks as quickly as they can, without a strict order.

Order

•linear: Can be slower, especially with a large number of hosts, as each task 
must complete on all hosts before moving to the next.

•free: Can be faster as hosts work through tasks independently.

Efficiency

•linear: More predictable as tasks are executed in a specific order across 
hosts.

•free: Less predictable as hosts may be on different tasks at any given time.

Predictability

•linear: Best for playbooks where task order and consistency across hosts 
are crucial.

•free: Best for playbooks where speed is more important than strict task 
order.

Use Case



• Playbook Level
• You can set the strategy for a specific 

playbook by adding the strategy directive 
at the beginning of your playbook

• Ansible Configuration
• If you want to set the free strategy as the 

default for all playbooks, you can do so in 
the Ansible configuration file (ansible.cfg)

How to change execution strategy




