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Persistent Storage for containers

• Data doesn’t persist when a container is removed, and it can be 
difficult to get the data out of the container if another process 
needs it

• A container ’s writable layer is tightly coupled to the host machine 
where the container is running

• Writing into a container’s writable layer requires a storage driver to 
manage the filesystem
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Mounting data in containers

• tmpfs mounts
• Stores data in host system memory ONLY (Linux-only)

• Data is not created on container writable layer

• bind mounts
• File or directory on the host machine is mounted into a container

• Referenced by its absolute path on the host machine

• Volumes
• Preferred mechanism for persisting data generated by and used by Docker containers

• Stored in a part of the host filesystem which is managed by Docker 

Storage
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When to use tempfs

• Cases when you do not want the data to persist either on the host 
machine or within the container

• Security reasons or to protect the performance of the container 
when your application needs to write a large volume

• Don’t allow sharing between containers

Storage
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How to use tempfs

docker run -d -it \
--mount type=tmpfs,destination=/tmp \
nginx:latest

• Using --mount flag with several options split by comma (,)
• type=tmpfs, mandatory and static

• destination=folder, where tmpfs is mounted inside contains

• tmpfs-size=# of bytes, size of tmpfs in bytes. Unlimited by default

Storage
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How to use tempfs

docker run -d -it \
--tmpfs /tmp \
nginx:latest

• Using --tmpfs flag
• Only allows to define destination on the container

• Exists for legacy purpose

• --mount is the preferable way to mount tmpfs
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Bind mounts

• Very performant, but they rely on the host machine’s filesystem

• Hard to share configuration between hosts

• Data already on container is not propagated to the host

• Non-empty directory on the container, the directory’s existing 
contents are obscured by the bind mount

• Allow sharing between containers

Storage
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When to use bind mounts

• Sharing configuration files from the host machine to containers (ex. 
DNS resolution)

• Sharing source code or build artifacts between a development 
environment on the Docker host and a container (ex. Debugger)

• When the file or directory structure of the Docker host is 
guaranteed to be consistent with the bind mounts the containers 
require.
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How to use bind mounts

docker run -d -it \
--mount type=bind,source=/tmp/data,target=/share\
nginx:latest

• Using --mount flag with several options split by comma (,)
• type=bind, mandatory and static

• source=folder, host folder to share

• target=folder, container folder to contain data

• readonly, making the mount read-only

Storage
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How to use bind mounts

docker run -d -it \
-v /tmp/data:/share  \
nginx:latest

• Using -v flag
• Source and destination folder split by colon (:)

• Access mode as additional block: :rw or :ro
• Default access mode is :rw

Storage
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Volumes

• Volumes are the preferred way to persist data

• Docker object that make part of daemon configuration

• Data is controlled by Docker even can be stored on a common 
folder on host filesystem
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Docker volumes: Advantages

• Volumes are easier to back up or migrate than bind mounts.

• You can manage volumes using Docker CLI commands or the 
Docker API.

• Volumes work on both Linux and Windows containers.

• Volumes can be more safely shared among multiple containers.

• Volume drivers let you store volumes on remote hosts or cloud 
providers, to encrypt the contents of volumes, or to add other 
functionality.

• New volumes can have their content pre-populated by a container.

Storage
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When to use volumes

• Sharing data among multiple running containers

• When the Docker host is not guaranteed to have a given directory 
or file structure

• When you want to store your container’s data on a remote host or 
a cloud provider, rather than locally

• When you need to back up, restore, or migrate data from one 
Docker host to another, volumes are a better choice

Storage
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How to manage Volumes

• Create a new volume

docker volume create my-vol
• List all available volumes

docker volume ls

• Get volume details

docker volume inspect my-vol
• Delete a volume

docker volume rm my-vol

Storage
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How to use volumes

docker run -d -it \
--mount source=my-vol,target=/share\
nginx:latest

• Using --mount flag with several options split by comma (,)
• source=volume, volume name to use

• target=folder, container folder to contain data

• readonly, making the mount read-only

Storage
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How to use volumes

docker run -d -it \
-v my-vol:/share  \
nginx:latest

• Using -v flag
• Volume name and destination folder split by colon (:)

• Access mode as additional block: :rw or :ro
• Default access mode is :rw

Storage
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How to run containers dynamically?

• Container runs on an isolated context

• Environment variables exists on container’s scope

• Preferrable way to “send” values to the container allowing different 
executions

• These variables can be set on docker run command

Env Vars
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Can be used and set on build time?

• ENV is an available command on Dockerfile

• Using ENV allows to set static values on the image

• ARG is an available command on Dockerfile that allows to 
dynamically send values during build time

• ARG and ENV can be used together to environment variables on 
the image

Env Vars
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Shell vs. Exec Form

• Shell form
▪ Runs the commands as a bash command

▪ EX. CMD echo “Hello World” → /bin/sh –c ‘echo “Hello World”

• Exec form
▪ Runs the commands directly without bash context

▪ Env vars cannot be used on this approach since only have values inside the shell

▪ EX. CMD [“/bin/echo”, “Hello”, “World”]

• Exec form is preferrable since the process will be executed directly
and will be easily controlled regarding container lifecycle

CMD vs. ENTRYPOINT
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What to choose?

• CMD
▪ Runs a process using arguments set on Dockerfile

▪ This command can be overwritten during docker run command

• ENTRYPOINT
▪ Runs a process using arguments set on Dockerfile

▪ This command cannot be overwritten during docker run command

▪ The arguments sent on docker run are sent the process defined on ENTRYPOINT as 
arguments

• CMD and ENTRYPOINT can work together using CMD values as 
default arguments for ENTRYPOINT process

CMD vs. ENTRYPOINT
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How to restrict resources?

• Containers shares host resources

• By default, any container can consume all host resources

• Those resources are shared by all containers

• Not having explicit control may cause resources exhaustion causing 
impact on containers and the host

• When running a container, you may enforce limits on how much 
CPU and memory can be used by the container

• Reaching the limit will not break the container, only don’t allow it to 
get more resources

Limits
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How to restrict resources?
Limits
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Lab 3: Persistency in containers

Lab 03 - Persistency in containers | docker-kubernetes-training 
(tasb.github.io)

Github
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https://tasb.github.io/docker-kubernetes-training/labs/lab03.html
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