
Session #03

Containers & Kubernetes

MoOngy 2021 1

S to rage

Env i ronment Var i ab le s

CMD vs ENTRYPOINT

L im i t s

Lab

2MoOngy 2021

Storage

MoOngy 2021 3

Persistent Storage for containers

• Data doesn’t persist when a container is removed, and it can be
difficult to get the data out of the container if another process
needs it

• A container ’s writable layer is tightly coupled to the host machine
where the container is running

• Writing into a container’s writable layer requires a storage driver to
manage the filesystem

Storage

MoOngy 2021 4

Mounting data in containers

• tmpfs mounts
• Stores data in host system memory ONLY (Linux-only)

• Data is not created on container writable layer

• bind mounts
• File or directory on the host machine is mounted into a container

• Referenced by its absolute path on the host machine

• Volumes
• Preferred mechanism for persisting data generated by and used by Docker containers

• Stored in a part of the host filesystem which is managed by Docker

Storage

MoOngy 2021 5

When to use tempfs

• Cases when you do not want the data to persist either on the host
machine or within the container

• Security reasons or to protect the performance of the container
when your application needs to write a large volume

• Don’t allow sharing between containers

Storage

MoOngy 2021 6

How to use tempfs

docker run -d -it \
--mount type=tmpfs,destination=/tmp \
nginx:latest

• Using --mount flag with several options split by comma (,)
• type=tmpfs, mandatory and static

• destination=folder, where tmpfs is mounted inside contains

• tmpfs-size=# of bytes, size of tmpfs in bytes. Unlimited by default

Storage

MoOngy 2021 7

How to use tempfs

docker run -d -it \
--tmpfs /tmp \
nginx:latest

• Using --tmpfs flag
• Only allows to define destination on the container

• Exists for legacy purpose

• --mount is the preferable way to mount tmpfs

Storage

MoOngy 2021 8

Bind mounts

• Very performant, but they rely on the host machine’s filesystem

• Hard to share configuration between hosts

• Data already on container is not propagated to the host

• Non-empty directory on the container, the directory’s existing
contents are obscured by the bind mount

• Allow sharing between containers

Storage

9

When to use bind mounts

• Sharing configuration files from the host machine to containers (ex.
DNS resolution)

• Sharing source code or build artifacts between a development
environment on the Docker host and a container (ex. Debugger)

• When the file or directory structure of the Docker host is
guaranteed to be consistent with the bind mounts the containers
require.

Storage

10

How to use bind mounts

docker run -d -it \
--mount type=bind,source=/tmp/data,target=/share\
nginx:latest

• Using --mount flag with several options split by comma (,)
• type=bind, mandatory and static

• source=folder, host folder to share

• target=folder, container folder to contain data

• readonly, making the mount read-only

Storage

MoOngy 2021 11

How to use bind mounts

docker run -d -it \
-v /tmp/data:/share \
nginx:latest

• Using -v flag
• Source and destination folder split by colon (:)

• Access mode as additional block: :rw or :ro
• Default access mode is :rw

Storage

MoOngy 2021 12

Volumes

• Volumes are the preferred way to persist data

• Docker object that make part of daemon configuration

• Data is controlled by Docker even can be stored on a common
folder on host filesystem

Storage

13

Docker volumes: Advantages

• Volumes are easier to back up or migrate than bind mounts.

• You can manage volumes using Docker CLI commands or the
Docker API.

• Volumes work on both Linux and Windows containers.

• Volumes can be more safely shared among multiple containers.

• Volume drivers let you store volumes on remote hosts or cloud
providers, to encrypt the contents of volumes, or to add other
functionality.

• New volumes can have their content pre-populated by a container.

Storage

MoOngy 2021 14

When to use volumes

• Sharing data among multiple running containers

• When the Docker host is not guaranteed to have a given directory
or file structure

• When you want to store your container’s data on a remote host or
a cloud provider, rather than locally

• When you need to back up, restore, or migrate data from one
Docker host to another, volumes are a better choice

Storage

MoOngy 2021 15

How to manage Volumes

• Create a new volume

docker volume create my-vol
• List all available volumes

docker volume ls

• Get volume details

docker volume inspect my-vol
• Delete a volume

docker volume rm my-vol

Storage

MoOngy 2021 16

How to use volumes

docker run -d -it \
--mount source=my-vol,target=/share\
nginx:latest

• Using --mount flag with several options split by comma (,)
• source=volume, volume name to use

• target=folder, container folder to contain data

• readonly, making the mount read-only

Storage

MoOngy 2021 17

How to use volumes

docker run -d -it \
-v my-vol:/share \
nginx:latest

• Using -v flag
• Volume name and destination folder split by colon (:)

• Access mode as additional block: :rw or :ro
• Default access mode is :rw

Storage

MoOngy 2021 18

Demo: S to rage

Environment Variables

MoOngy 2021 22

How to run containers dynamically?

• Container runs on an isolated context

• Environment variables exists on container’s scope

• Preferrable way to “send” values to the container allowing different
executions

• These variables can be set on docker run command

Env Vars

MoOngy 2021 23

Can be used and set on build time?

• ENV is an available command on Dockerfile

• Using ENV allows to set static values on the image

• ARG is an available command on Dockerfile that allows to
dynamically send values during build time

• ARG and ENV can be used together to environment variables on
the image

Env Vars

MoOngy 2021 24

Demo: Env Var s

CMD vs ENTRYPOINT

MoOngy 2021 26

Shell vs. Exec Form

• Shell form
▪ Runs the commands as a bash command

▪ EX. CMD echo “Hello World” → /bin/sh –c ‘echo “Hello World”

• Exec form
▪ Runs the commands directly without bash context

▪ Env vars cannot be used on this approach since only have values inside the shell

▪ EX. CMD [“/bin/echo”, “Hello”, “World”]

• Exec form is preferrable since the process will be executed directly
and will be easily controlled regarding container lifecycle

CMD vs. ENTRYPOINT

MoOngy 2021 27

What to choose?

• CMD
▪ Runs a process using arguments set on Dockerfile

▪ This command can be overwritten during docker run command

• ENTRYPOINT
▪ Runs a process using arguments set on Dockerfile

▪ This command cannot be overwritten during docker run command

▪ The arguments sent on docker run are sent the process defined on ENTRYPOINT as
arguments

• CMD and ENTRYPOINT can work together using CMD values as
default arguments for ENTRYPOINT process

CMD vs. ENTRYPOINT

MoOngy 2021 28

Demo: A rgument s a t Run &

Bu i ld

Limits

M
o
O
n
g
y
2
0
2
1

3
0

How to restrict resources?

• Containers shares host resources

• By default, any container can consume all host resources

• Those resources are shared by all containers

• Not having explicit control may cause resources exhaustion causing
impact on containers and the host

• When running a container, you may enforce limits on how much
CPU and memory can be used by the container

• Reaching the limit will not break the container, only don’t allow it to
get more resources

Limits

MoOngy 2021 31

How to restrict resources?
Limits

MoOngy 2021 32

Demo: L im i t s

Lab

MoOngy 2021 34

Lab 3: Persistency in containers

Lab 03 - Persistency in containers | docker-kubernetes-training
(tasb.github.io)

Github

MoOngy 2021 35

https://tasb.github.io/docker-kubernetes-training/labs/lab03.html

Rua Sousa Martins, nº 10

1050-218 Lisboa | Portugal

