
Session #05

Containers & Kubernetes

Conta ine r Orches t ra t ion

Kuberne tes : A rch i tec tu re

Kubec t l

Pods

Namespaces

Lab

2MoOngy 2021

Container Orchestration

Motivation

• Containers brings benefits on development process, tests and
deployment

• Portability between environments

• Higher productivity (less configuration needs)

• Less footprint with bigger density on hardware

• Resources isolation

• But brings several challenges to manage and operate!

Container Orchestration

Motivation

• All management, maintenance and operation can be done
manually but could be a crazy task!

• To have more agility, automation and ease on these tasks,
orchestration is the key

• Main orchestration features
▪ Scheduling

▪ Affinity

▪ Monitoring

▪ Failover

▪ Scalability

▪ Networking

▪ Service Descovery

▪ Application upgrades

Container Orchestration

Motivation

• Scheduling
▪ Container provisioning using nodes metrics and containers requests

• Affinity
▪ Specific configuration for provisioning about availability/performance

• Monitoring
▪ Detect and fix failures on a reactive/preventive way

• Failover
▪ Re-provision faulty instances

▪ Re-provision instances to healthy machines

Container Orchestration

Motivation

• Scalability
▪ Add/remove instances to meet demand

• Networking
▪ Networking overlay for container communication

▪ Allow inbound/outbound communication with the cluster

• Service Discovery
▪ Enable containers to locate each other

• Application Upgrades
▪ Avoid downtime and automatically rollback

Container Orchestration

Solutions

• Several options on the market
▪ Docker Swarm

▪ Apache Mesos

▪ Hashicorp Nomad

▪ Rancher

• Kubernetes is the de-facto orchestration solution on the market
nowadays

Container Orchestration

Kubernetes

• Kubernetes is a portable, extensible, open-source platform for
managing containerized workloads and services, that facilitates
both declarative configuration and automation.

• The name Kubernetes originates from Greek, meaning helmsman
or pilot.

• K8s as an abbreviation results from counting the eight letters
between the "K" and the "s".

• Google open-sourced the Kubernetes project in 2014. Donated to
Cloud Native Computing Foundation (CNCF) in 2015

Container Orchestration

Kubernetes: Architecture

MoOngy 2021 11

Architecture

Kubernetes Cluster

• A Kubernetes cluster consists of a set of machines (physical or
virtual), called nodes

• Master node(s) (aka control plane) manages the worker nodes and
the cluster

• Worker node(s) runs containerized workloads

• Worker nodes can be heterogeneous (small, large, GPUs, Linux,
Windows, etc.)

Architecture

Kubernetes Cluster

• API Server: exposes the
Kubernetes API outside the
cluster.

• etcd: Consistent and highly-
available key value store used
to store for all cluster data

• Scheduler: Watches for newly
created Pods with no assigned
node and selects a node for
them to run on

• Controller Manager: Manages
controller processes

Architecture

Master Nodes

• Kubelet: An agent that runs
on each node in the cluster.

• Kube-proxy: A network proxy
that runs on each node in
your cluster, implementing
part of the Kubernetes
Service concept.

• Container runtime (CRI): The
engine responsible for
running containers.

Architecture

Worker Nodes

Kubectl

MoOngy 2021 16

• Kubernetes is a “simple” REST
API application, you can manage
a cluster by making REST calls to
the API Server.

• Example HTTP Request:
GET /api/v1/namespaces/default/pods/{name}

• However, it’s much easier to use
the official Kubernetes client
command-line utility → kubectl

Kubectl

API Server

Kubectl

How to use?

kubectl [command] [TYPE] [NAME] [flags]

• command: Operation that you want to perform on one or more
resources, for example create, get, describe, delete.

• TYPE: Resource type. Case-insensitive and can specify the singular,
plural, or abbreviated forms.

• NAME: Case-insensitive name of the resource. If the name is
omitted, details for all resources are displayed

• flags: Optional flags. For example, -o allow to specify output
type of the commands

Kubectl

Examples

• List all nodes

kubectl get nodes

• Get more details on node node01

kubectl describe node node01

• List all pods

kubectl get pods

• Delete pod pod-01

kubectl delete pod pod-01

• Execute a bash command in Pod pod-01

kubectl exec –it pod-01 -- bash

Kubectl

How to use?

• You can perform an action on several resource using only one
command even on resources from different types

• Resources from same type

kubectl get pod pod-01 pod-02

• Resources from different types

kubectl get pod/pod-01 node/node01

kubectl Cheat Sheet | Kubernetes

Kubectl Reference Docs (kubernetes.io)

https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Kubectl

kubeconfig

• kubeconfig is a file used to organize access to several cluster
usually stored at ~/.kube/config

• Needs to be kept on a secure place since have complete
information about authn/authz of a user to a cluster

• This file should never be included on a repo or used for CI/CD
process due to security reasons

Kubectl

kubeconfig

• Get all clusters configuration available

kubectl config view

• Get actual context

kubectl config current-context

• Set another context

kubectl config use-context my-cluster-name

Demo: Kubec t l

Kubectl

Declarative Configuration

• An imperative configuration explicitly instructs a system on the
steps to take to achieve a desired outcome (like using Docker
commands):
▪ Connect to container registry

▪ Pull desired image

▪ Create container

▪ Start container

• A declarative configuration specifies a final, or desired state of an
object, and lets the system determine what steps to take to achieve
that state.

• The Kubernetes control plane continually and actively manages
every object's actual state to match the desired state you supplied.

Kubectl

Declarative Configuration using YAML

• REST API applications like Kubernetes API Server, exchange data
using JSON format

• When using kubectl, you provide a desired state configuration
using the YAML markup language (Yet Another Markup Language)

• kubectl converts your YAML to JSON when communicate with the
Kubernetes API Server

• YAML uses indentation instead nested curly brackets ({}) to create
hierarchy.

Kubectl

Declarative Configuration using YAML

• Whitespace indentation is used for create file structure

• Tab characters are not allowed as part of that indentation

• Comments begin with the number sign(#) until the end of the line

• List members are denoted by a leading hyphen (-)

• An associative array entry is represented using colon space in the
form key: value with one entry per line.

• Strings are ordinarily unquoted but may be enclosed in double-
quotes ("), or single-quotes (‘).

• Multiple documents with single streams are separated with 3
hyphens (---).

• apiVersion: API group and
version of the API you’re
calling to create this object

• kind: Object you want to
create

• metadata: Data that helps
uniquely identify the object,
including a name string, UID,
and optional namespace

• spec (most objects): Desired
state for the object

Kubectl

K8S Manifest File

Pods

MoOngy 2021 28

Pods

What is a pod?

• Pods are the smallest deployable compute units you can create and
manage in Kubernetes

• A Pod can manage one or more containers, with shared storage
(volumes), environment variables, network resources, and a
specification for how to run the containers

• Containers running in a Pod share the same IP and ports and
communicate using native inter-process communication channels
or localhost.

• Pods are immutable - if any change is made to the Pod
specification (spec), a new Pod is created and then the old Pod is
deleted

Pods

Lifecycle

• Pod specification on a YAML file used by kubectl to ask the cluster
to schedule the pod

• API Server add configuration in ETCD on a persistent way

• Scheduler finds a new pod maps to best available node

• Kubelet (on worker node) gets a notification about provisioning the
pod and starts to create the associated containers

• Docker (or container runtime) creates new instances

• All pod status are saved on ETCD

MoOngy 2021 31

pod
name: nginx-pod

Container

Name: nginx-container

Port 80

Image: nginx

MoOngy 2021 32

pod
name: redis-nginx

Container

key-value-store

Port 6379

Image:redis

Container

frontend

Port 80

Image: nginx

Pods

How to access pods

• Get access to nginx-pod pod

kubectl –it exec nginx-pod -- sh

• Get access to container frontend on redis-nginx pod

kubectl exec –it redis-nginx –c frontend -- bash

• Port forwarding to port 80 on nginx-pod pod

kubectl port-forward nginx-pod 8080:80

• Port forwarding to port 80 on redis-nginx pod

kubectl port-forward redis-nginx 8080:80

Pods

Handle resources

• A good practice when deploying pods on Kubernetes is to define
the resources that will be used by it

• Kubernetes uses 2 concepts
▪ Requests: Amount of resources used by scheduler to define which node could best fit. This

amount is always reserved for the pod

▪ Limits: Maximum amount of resources a pod can use.

• You can define request and limits for CPU and memory (in the
future, for GPU too)

Pods

Some considerations

• A Pod don’t have any ability of self-healing

• Pods can be used directly but usually a controller is used to
automatically manage your pods

• Each controller have specific way to control and manage their pods
▪ ReplicaSets: Controls pods number of replicas

▪ DaemonSets: Controls if one pods runs on each worker node

▪ StatfulSets: Controls link between pod and persistent storage to handle pod state

Demo: Pods

Namespaces

MoOngy 2021 37

Namespaces

What is a Namespace?

• Kubernetes supports multiple virtual clusters backed by the same
physical cluster. These virtual clusters are called namespaces.

• Namespaces are intended for use in environments with many users
spread across multiple teams, or projects.

• Namespaces provide a scope for names. Names of resources need
to be unique within a namespace, but not across namespaces.

• Get a list of Namespaces

kubectl get namespaces

• Get a list of Pods in a namespace

kubectl get pods –n mynamespace

Namespaces

How to use?

• Namespaces can be used to define global network policies
allowing/denying communications

• Namespaces can be used to isolate resources by:
▪ Component Type – Ex: All backends in one namespace, all websites in another

▪ Users – Ex: User rights/quotas can be limited by namespace

▪ Environments – Ex: Dev resources can be in one namespace, QA in another

▪ System Segment – Ex: Catalog microservices in one namespace, ordering in another

• To access resources across namespaces, use their FDQN:

curl catalog-service.mynamespace.svc.cluster.local

Namespaces

Mandatory usage of Namespaces?

• Usually your resources are created in the context of a namespace

• “Default” namespace is used whenever you don’t explicitly set the
namespace to use

• Get list of resources that aren’t namespaced scope

kubectl api-resources --namespaced=false

Demo: Namespace

Lab

MoOngy 2021 42

Lab 5: Introduction to Kubernetes

Lab 05 - Introduction to Kubernetes | docker-kubernetes-training
(tasb.github.io)

Github

MoOngy 2021 43

https://tasb.github.io/docker-kubernetes-training/labs/lab05.html

Rua Sousa Martins, nº 10

1050-218 Lisboa | Portugal

