Containers & Kubernetes
Session #05

Container Orchestration
Kubernetes: Architecture
mOOno'lI’. Kubectl
(@
Pods
Namespaces
Lab

Container Orchestration

Motivation

 Containers brings benefits on development process, tests and
deployment

* Portability between environments

 Higher productivity (less configuration needs)

e Less footprint with bigger density on hardware

» Resources isolation

 But brings several challenges to manage and operate!

Motivation
Container Orchestration

 All management, maintenance and operation can be done
manually but could be a crazy task!

* Jo have more agility, automation and ease on these tasks,
orchestration is the key

« Main orchestration features
= Scheduling
= Affinity
= Monitoring
= Failover
= Scalability
= Networking
= Service Descovery

» Application upgrades
moOnsy.

Motivation
Container Orchestration

 Scheduling

= Container provisioning using nodes metrics and containers requests

. Affinity

= Specific configuration for provisioning about availability/performance

* Monitoring
= Detect and fix failures on a reactive/preventive way

e Failover

= Re-provision faulty instances
= Re-provision instances to healthy machines

moOngu.

Motivation
Container Orchestration

* Scalability

= Add/remove instances to meet demanad

» Networking
= Networking overlay for container communication
= Allow inbound/outbound communication with the cluster

* Service Discovery
= Enable containers to locate each other

 Application Upgrades

= Avoid downtime and automatically rollback

moOngu.

Solutions
Container Orchestration

* Several options on the market

= Docker Swarm

» Apache Mesos

= Hashicorp Nomad
= Rancher

e Kubernetes is the de-facto orchestration solution on the market
nowadays

moOngu.

Kubernetes

« Kubernetes is a portable, extensible, open-source platform for
managing containerized workloads and services, that facilitates
both declarative configuration and automation.

* The name Kubernetes originates from Greek, meaning helmsman
or pilot.

 K8s as an abbreviation results from counting the eight letters
between the "K" and the "s".

« Google open-sourced the Kubernetes project in 2014. Donated to
Cloud Native Computing Foundation (CNCF) in 2015

Kubernetes: Architecture

Kubernetes Cluster

* A Kubernetes cluster consists of a set of machines (physical or
virtual), called nodes

« Master node(s) (aka control plane) manages the worker nodes and
the cluster

* Worker node(s) runs containerized workloads

» Worker nodes can be heterogeneous (small, large, GPUs, Linux,
Windows, etc.)

Kubernetes Cluster
Architecture

MASTER NODE

API Server

Scheduler

| KUBE |
Controller

Manager

| cLoun |
Controller

Manager

WORKER NODE

Master Nodes

Architecture
 API Server: exposes the

Kubernetes AP| outside the
cluster.

etcd: Consistent and highly-
available key value store used

to store for all cluster data

Scheduler: Watches for newly
created Pods with no assigned
node and selects a node for
them to run on

Controller Manager: Manages
controller processes

kubectl

MASTER NODE

Worker Nodes

Architecture

« Kubelet: An agent that runs
on each node in the cluster. [orcer

« Kube-proxy: A network proxy
that runs on each node in
your cluster, implementing
part of the Kubernetes
Service concept.

« (Container runtime (CRI): The
engine responsible for
running containers.

NODE

Kubectl

AP| Server
Kubectl

« Kubernetes is a “simple” REST
API application, you can manage
a cluster by making REST calls to
the API Server.

* Example HTTP Request:

kubectl

GET /api/vl/namespaces/default/pods/{name}

 However, it's much easier to use
the official Kubernetes client
command-line utility = kubectl

MASTER NODE

How 1O use?

kubectl [command] [TYPE] [NAME] [flags]

« command: Operation that you want to perform on one or more
resources, for example create, get, describe, delete.

* TYPE: Resource type. Case-insensitive and can specify the singular,
olural, or abbreviated forms.

« NAME: Case-insensitive name of the resource. If the name is
omitted, details for all resources are displayed

« flags: Optional flags. For example, —o allow to specity output
type of the commands

Examples

List all nodes

kubectl get nodes
Get more details on node node01

kubectl describe node node0l

List all pods

kubectl get pods
Delete pod pod-01

kubectl delete pod pod-01

Execute a bash command in Pod pod-01
kubectl exec -it pod-01 —- bash

How to use’
Kubect]

* You can perform an action on several resource using only one
command even on resources from different types

« Resources from same type
kubectl get pod pod-01 pod-02

« Resources from different types
kubectl get pod/pod-01 node/node0l

kubectl Cheat Sheet | Kubernetes
Kubectl Reference Docs (kubernetes.io)

moOnsy.

https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

kubeconfig

« kubeconfig is a file used to organize access to several cluster
usually stored at ~/ kube/contig

« Needs to be kept on a secure place since have complete
information about authn/authz of a user to a cluster

* This file should never be included on a repo or used for CI/CD
process due to security reasons

kubeconfig

* Get all clusters configuration available
kubectl config view
» et actual context
kubectl config current-context

* Set another context
kubectl config use-context my-cluster-name

moOngl.l- Demo: Kubectl

Declarative Configuration

 An imperative configuration explicitly instructs a system on the
steps to take to achieve a desired outcome (like using Docker
commands):

Connect to container registry

» Pull desired image

Create container
Start container

* A declarative configuration specifies a final, or desired state of an
object, and lets the system determine what steps to take to achieve

that state.

* The Kubernetes control plane continually and actively manages
every object's actual state to match the desired state you supplied.

Declarative Configuration using YAML
Kubectl

« REST API applications like Kubernetes API Server, exchange data
using JSON format

* When using kubectl, you provide a desired state configuration
using the YAML markup language (Yet Another Markup Language)

* kubectl converts your YAML to JSON when communicate with the
Kubernetes APl Server

* YAML uses indentation instead nested curly brackets ({}) to create
hierarchy.

moOnsy.

Declarative Configuration using YAML

Kubectl

» Whitespace indentation is used for create file structure

 Tab characters are not allowed as part of that indentation

« Comments begin with the number sign(#) until the end of the line
* List members are denoted by a leading hyphen (-)

* An associative array entry is represented using colon space in the
form key: value with one entry per line.

* Strings are ordinarily unquoted but may be enclosed in double-
quotes ("), or single-quotes ().

« Multiple documents with single streams are separated with 3
hyphens (---).

KBS Manifest File
Kubectl

* apiVersion: APl group and
version of the APl you're
calling to create this object

kind: Object you want to
Create

metadata: Data that helps
uniquely identify the object,
including a name string, UID,
and optional namespace

spec (most objects): Desired
state for the object

Pod

redi

web

vl

s-nginx

key-value-store

redis

frontend
nginx

MoOngy 2021

Pods

28

What is a pod? @
Pods

* Pods are the smallest deployable compute units you can create and
manage in Kubernetes

* A Pod can manage one or more containers, with shared storage
(volumes), environment variables, network resources, and a
specification for how to run the containers

 Containers running in a Pod share the same IP and ports and
communicate using native inter-process communication channels
or localhost.

 Pods are immutable - if any change is made to the Pod
specification (spec), a new Pod is created and then the old Pod is
deleted

moOngl,!.

Lifecycle @
Pods

 Pod specification on a YAML file used by kubectl to ask the cluster
to schedule the pod

« APl Server add configuration in ETCD on a persistent way

* Scheduler finds a new pod maps to best available node

 Kubelet (on worker node) gets a notification about provisioning the
nod and starts to create the associated containers

e Docker (or container runtime) creates new instances
* All pod status are saved on ETCD

moOngu.

Pod

nginx-pod

nginx
nginx-container

MoOngy 2021

pod
name: nginx-pod

Container

Name: nginx-container
Port 80

Image: nginx

Pod
redis—nginx

web

key-value-store
redis

frontend
nginx

MoOngy 2021

pod
name: redis-nginx
Container Container

key-value-store frontend

Port 6379 Port 80

Image:redis Image: nginx

How to access pods

 Get access to nginx-pod pod
kubectl -it exec nginx—pod —— sh

 Get access to container frontend on redis-nginx pod
kubectl exec -it redis—-nginx -c frontend —- bash

* Port forwarding to port 80 on nginx-pod pod
kubectl port-forward nginx-pod 8080:80

« Port forwarding to port 80 on redis-nginx pod
kubectl port-forward redis—nginx 8080:80

Handle resources
Pods

A good practice when deploying pods on Kubernetes is to define
the resources that will be used by it

» Kubernetes uses 2 concepts

» Requests: Amount of resources used by scheduler to define which node could best fit. This
amount is always reserved for the pod

= Limits: Maximum amount of resources a pod can use.

e You can define request and limits for CPU and memory (in the
future, for GPU too)

Some considerations
Pods
» A Pod don't have any ability of self-healing

 Pods can be used directly but usually a controller is used to
automatically manage your pods

 Each controller have specific way to control and manage their pods

» ReplicaSets: Controls pods number of replicas
= DaemonSets: Controls if one pods runs on each worker node
= StatfulSets: Controls link between pod and persistent storage to handle pod state

moOnsy.

moon8|1'° Demo: Pods

Namespaces

What is a Namespace? @
Namespaces
» Kubernetes supports multiple virtual clusters backed by the same

ohysical cluster. These virtual clusters are called namespaces.

» Namespaces are intended for use in environments with many users
spread across multiple teams, or projects.

« Namespaces provide a scope for names. Names of resources need
to be unigue within a namespace, but not across namespaces.

 (Get a list of Namespaces
kubectl get namespaces
» (GGet a list of Pods in a namespace
kubectl get pods -n mynamespace

moOnsy.

How to use’
Namespaces

* N
a

* N

amespaces can be used to define global network policies
lowing/denying communications

amespaces can be used to isolate resources by:

= Component Type — Ex: All backends in one namespace, all websites in another

» Users — Ex: User rights/quotas can be limited by namespace

» Environments — Ex: Dev resources can be in one namespace, QA in another

= System Segment — Ex: Catalog microservices in one namespace, ordering in another

* JO access resources across namespaces, use their FDQN:

curl catalog-service.mynamespace.svc.cluster.local

moOngu.

Mandatory usage of Namespaces?
Namespaces

 Usually your resources are created in the context of a namespace

 "Default” namespace is used whenever you don't explicitly set the
namespace to use

 Get list of resources that aren’t namespaced scope
kubectl api-resources ——namespaced=false

NAME SHORTNAMES APIVERSION NAMESPACED KIND
componentstatuses cs vl false ComponentStatus
namespaces ns vl false Namespace

nodes no vl false Node

persistentvolumes pv vl false PersistentVolume
mutatingwebhookconfigurations admissionregistration.k8s.io/vl false MutatingWebhookConfiguration
validatingwebhookconfigurations admissionregistration.k8s.io/vl false ValidatingWebhookConfiguration
customresourcedefinitions crd, crds apiextensions.k8s.io/vl false CustomResourceDefinition

moon8|1'° Demo: Namespace

MoOngy 2021

Lab

42

Lab 5: Introduction to Kubernetes
Github

Lab 05 - Introduction to Kubernetes | docker-kubernetes-training
(tasb.github.io)

MoOngy 2021 43 moOngl,l.

https://tasb.github.io/docker-kubernetes-training/labs/lab05.html

moOngl,l.

Minds on the move

O Rua Sousa Martins, n° 10

1050-218 Lisboa | Portugal

