
Session #08

Containers & Kubernetes

MoOngy 2021 1

S to rage

Conf igMaps

Sec re t s

Lab

2MoOngy 2021

Storage

MoOngy 2021 3

Motivation

• On-disk files in a container are ephemeral, which presents some
problems for non-trivial applications when running in containers

• One problem is the loss of files when a container crashes. The
kubelet restarts the container but with a clean state

• A second problem occurs when sharing files between containers
running together in a Pod.

• The Kubernetes volume abstraction solves both of these problems.

Storage

MoOngy 2021 4

Kubernetes Volumes

• Kubernetes supports many types of volumes and a Pod can use any
number of volume types simultaneously

• Ephemeral volume types have a lifetime of a pod

• Persistent volumes exist beyond the lifetime of a pod

• When a pod ceases to exist, Kubernetes destroys ephemeral
volumes; however, Kubernetes does not destroy persistent volumes

Storage

MoOngy 2021 5

Ephemeral Volumes

• Some application need additional storage but don't care whether
that data is stored persistently across restarts, like caching services

• Other applications expect some read-only input data to be present
in files, like configuration data or secret keys

• Ephemeral volume are designed for these use cases. Because
volumes follow the Pod's lifetime and get created and deleted
along with the Pod

• Volumes are defined on Pod Spec along containers

• Mount concept follows Docker volume mount strategy

Storage

MoOngy 2021 6

Types of Ephemeral Volumes

• Empty Dir – A temporary folder for all containers within a Pod to
read/write to.

• Host Path – Mounts a file or directory from the host node's
filesystem into your Pod. Not practical in a multi-node cluster.

• Config Map/Secret – A Read-only folder that provides a way to
inject configuration data into pods.

Storage

MoOngy 2021 7

MoOngy 2021 9

Storage

Ephemeral Volumes

redis container only mounts
emptyDir volume

nginx container mounts both
volumes {

emptyDir volume definition {
hostPath volume definition {

{

Demo: Ephemera l Vo lumes

Persistent Volumes

• Persistent volumes exist beyond the lifetime of a pod

• PersistentVolume subsystem provides an API for users and
administrators that abstracts details of how storage is provided
from how it is consumed using PersistentVolume and
PersistentVolumeClaim

• PersistentVolume (PV) is a piece of storage in the cluster that has
been provisioned by an administrator or dynamically provisioned
using Storage Classes

• PersistentVolumeClaim (PVC) is a request for storage by a user. It is
similar to a Pod. Pods consume node resources and PVCs consume
PV resources

Storage

MoOngy 2021 11

Persistent Volumes Types

• awsElasticBlockStore - AWS Elastic Block Store (EBS)

• azureDisk - Azure Disk

• azureFile - Azure File

• cephfs - CephFS volume

• csi - Container Storage Interface (CSI)

• fc - Fibre Channel (FC) storage

• gcePersistentDisk - GCE Persistent Disk

• glusterfs - Glusterfs volume

• hostPath - HostPath volume (for single node testing only; WILL NOT WORK in a multi-node cluster; consider using local volume
instead)

• iscsi - iSCSI (SCSI over IP) storage

• local - local storage devices mounted on nodes.

• nfs - Network File System (NFS) storage

• portworxVolume - Portworx volume

• rbd - Rados Block Device (RBD) volume

• vsphereVolume - vSphere VMDK volume

Storage

MoOngy 2021 12

Persistent Volumes Lifecycle
Storage

MoOngy 2021 13

PV
Provisioning

PVC
Binding

Storage
Protection

PVC
Release

MoOngy 2021 14

• There are two ways PVs may be
provisioned: statically or dynamically.

• Static: A cluster administrator creates a
number of PVs. They carry the details of
the real storage, which is available for use
by cluster users

• Dynamic: When none of the static PVs the
administrator created match a user's
PersistentVolumeClaim, the cluster may try
to dynamically provision a volume specially
for the PVC. This provisioning is based on
StorageClasses

PV Provisioning
PV Lifecycle

PV
Provisioning

PVC
Binding

Storage
Protection

PVC
Release

MoOngy 2021 15

• A user creates a PersistentVolumeClaim with a
specific amount of storage requested and with
certain access modes

• Claims will remain unbound indefinitely if a
matching volume does not exist
• For example, a cluster provisioned with many 50Gi PVs would

not match a PVC requesting 100Gi

• Access Modes
• ReadWriteOnce (RWO): RW on single node for all pods on node

• ReadOnlyMany (ROX): RO on multiple nodes

• ReadWriteMany (RWX): RW on multiple nodes and pods

• ReadWriteOncePod (RWOP): RW to a single pod

PVC Binding
PV Lifecycle

PV
Provisioning

PVC
Binding

Storage
Protection

PVC
Release

MoOngy 2021 16

• The purpose of the Storage Object in Use
Protection feature is to ensure that
PersistentVolumeClaims (PVCs) in active use by a
Pod and PersistentVolume (PVs) that are bound to
PVCs are not removed from the system

• If a user deletes a PVC in active use by a Pod, the
PVC is not removed immediately. PVC removal is
postponed until the PVC is no longer actively used
by any Pods

• If an admin deletes a PV that is bound to a PVC,
the PV is not removed immediately. PV removal is
postponed until the PV is no longer bound to a
PVC

Storage Protection
PV Lifecycle

PV
Provisioning

PVC
Binding

Storage
Protection

PVC
Release

MoOngy 2021 17

• When a user is done with their volume, they can
delete the PVC objects from the API that allows
reclamation of the resource

• The reclaim policy for a PersistentVolume tells the
cluster what to do with the volume after it has
been released of its claim: Retain, Recycle or
Delete

• Retain: Volume is available but data written
remains on storage

• Recycle: Data written is delete and volume as all
free space again

• Delete: Volume is deleted. Depends on Storage
Class

PVC Release
PV Lifecycle

PV
Provisioning

PVC
Binding

Storage
Protection

PVC
Release

MoOngy 2021 18

Storage

Persistent Volume

capacity defines storage size

storageClassName defines storage class

nodeAffinity defines where
volume will be located to work
properly on multi-node cluster {

accessModes defines allowed modes

Specific properties for local storage

MoOngy 2021 19

Storage

Persistent Volume Claim

storageClassName defines type of
volume that Claim wants to use

resources defines amount of storage

accessModes needed on volume

To have a binding, all configs needs to
be filled by an individual volume

Demo: Pe r s i s ten t Vo lumes

ConfigMaps

MoOngy 2021 21

Motivation

• When running pods you may need to add some configuration to
make it work properly

• For example, set database host that can be different depending the
environment you are running it

• At same time, there are configurations that may be shared by
different pods, like an external service

• Finally, having a way to update some configuration that don’t need
Pods restart

• Kubernetes have a ConfigMap object to handle configurations

ConfigMaps

MoOngy 2021 22

What is a ConfigMap

• ConfigMap is an object used to store non-confidential data in key-
value pairs

• ConfigMap allows you to decouple environment-specific
configuration from your container images, so that your applications
are easily portable

• Pods can consume ConfigMaps as environment variables,
command-line arguments, or as configuration files in a volume

• ConfigMaps as volumes are updated automatically when
ConfigMap is updated

• ConfigMaps as environment variables are not updated
automatically. A Pod restart is needed

ConfigMaps

MoOngy 2021 23

MoOngy 2021 24

ConfigMaps

ConfigMap Manifest

ConfigMap name. Used for matching

Property-like keys. One key, one value

File-like keys. One key, a list of values

MoOngy 2021 25

ConfigMaps

Pod Spec

ConfigMap as environment variable

Pod Volume mount using ConfigMap

ConfigMap as Volume

{

{
{

Demo: Con f igMaps

Secrets

MoOngy 2021 27

Motivation

• Your pods need to have access to sensitive data, like password,
token, etc.

• You may define that sensitive data on Pod specification or container
image but that can arise some security concerns

• Additionally having sensitive data configured apart from the pods
can bring more agility

• Secrets are Kubernetes objects to reach these goals

Secrets

MoOngy 2021 28

What is a Secret

• Secrets allow to store and manage sensitive information, such as
passwords, OAuth tokens, ssh keys and TLS certificates

• Storing confidential information in a Secret is safer and more
flexible than putting it in a Pod definition or in a container image

• Pods can consume Secrets as environment variables, command-line
arguments, or as configuration files in a volume

• Secrets as volumes are updated automatically when Secrets is
updated

• Secrets as environment variables are not updated automatically. A
Pod restart is needed

Secrets

MoOngy 2021 29

Types of Secret
Secrets

MoOngy 2021 30

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types

Default ->

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types

Encoded, NOT Encrypted

• Secrets are stored unencrypted inside the cluster!

• Secrets are only encoded using base64 algorithm which can be
easily reverted

• AS being a regular object on Kubernetes, can be retrieved as plain
text by someone with API access

• Some options to handle this security concern
• Using Kubernetes RBAC to restrict reading and writing of Secrets

• Using 3rd-party services to store secrets and integrate with Kubernetes (like Azure Key
Vault, Hashicorp Vault, etc.)

Secrets

MoOngy 2021 31

MoOngy 2021 32

Secrets

Secret Manifest

Pair Key-Value with secret

Secret value encoded on base64

MoOngy 2021 33

Secret

Pod Spec

Secret as environment variable

Pod Volume mount using Secret

Secret as Volume

{
{
{

Using Kubectl Commands

• Create from literal (command line value)

kubectl create secret generic mysecret --dry-run=client \

--from-literal=secret=secretValue

• Create from file (encoding content)

kubectl create secret generic test-secret \

--dry-run=client --from-file=secret-file.json

• Using kubectl to encode content to base64

kubectl create secret generic test-secret \

--dry-run=client --from-file=secret-file.json –o yaml

Secrets

MoOngy 2021 34

Demo: Sec re t s

Lab

MoOngy 2021 36

Lab 8: Storage in Kubernetes

Lab 08 - Storage in Kubernetes | docker-kubernetes-training
(tasb.github.io)

Github

MoOngy 2021 37

https://tasb.github.io/docker-kubernetes-training/labs/lab08.html

Rua Sousa Martins, nº 10

1050-218 Lisboa | Portugal

