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Motivation

• On-disk files in a container are ephemeral, which presents some 
problems for non-trivial applications when running in containers

• One problem is the loss of files when a container crashes. The 
kubelet restarts the container but with a clean state

• A second problem occurs when sharing files between containers 
running together in a Pod. 

• The Kubernetes volume abstraction solves both of these problems.
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Kubernetes Volumes

• Kubernetes supports many types of volumes and a Pod can use any 
number of volume types simultaneously

• Ephemeral volume types have a lifetime of a pod

• Persistent volumes exist beyond the lifetime of a pod

• When a pod ceases to exist, Kubernetes destroys ephemeral 
volumes; however, Kubernetes does not destroy persistent volumes

Storage

MoOngy 2021 5



Ephemeral Volumes

• Some application need additional storage but don't care whether 
that data is stored persistently across restarts, like caching services

• Other applications expect some read-only input data to be present 
in files, like configuration data or secret keys

• Ephemeral volume are designed for these use cases. Because 
volumes follow the Pod's lifetime and get created and deleted 
along with the Pod

• Volumes are defined on Pod Spec along containers

• Mount concept follows Docker volume mount strategy
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Types of Ephemeral Volumes

• Empty Dir – A temporary folder for all containers within a Pod to 
read/write to.  

• Host Path – Mounts a file or directory from the host node's 
filesystem into your Pod. Not practical in a multi-node cluster.

• Config Map/Secret – A Read-only folder that provides a way to 
inject configuration data into pods. 
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Ephemeral Volumes

redis container only mounts 
emptyDir volume

nginx container mounts both 
volumes {

emptyDir volume definition {
hostPath volume definition {

{



Demo:  Ephemera l Vo lumes



Persistent Volumes

• Persistent volumes exist beyond the lifetime of a pod

• PersistentVolume subsystem provides an API for users and 
administrators that abstracts details of how storage is provided 
from how it is consumed using PersistentVolume and 
PersistentVolumeClaim

• PersistentVolume (PV) is a piece of storage in the cluster that has 
been provisioned by an administrator or dynamically provisioned 
using Storage Classes

• PersistentVolumeClaim (PVC) is a request for storage by a user. It is 
similar to a Pod. Pods consume node resources and PVCs consume 
PV resources
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Persistent Volumes Types

• awsElasticBlockStore - AWS Elastic Block Store (EBS)

• azureDisk - Azure Disk

• azureFile - Azure File

• cephfs - CephFS volume

• csi - Container Storage Interface (CSI)

• fc - Fibre Channel (FC) storage

• gcePersistentDisk - GCE Persistent Disk

• glusterfs - Glusterfs volume

• hostPath - HostPath volume (for single node testing only; WILL NOT WORK in a multi-node cluster; consider using local volume 
instead)

• iscsi - iSCSI (SCSI over IP) storage

• local - local storage devices mounted on nodes.

• nfs - Network File System (NFS) storage

• portworxVolume - Portworx volume

• rbd - Rados Block Device (RBD) volume

• vsphereVolume - vSphere VMDK volume

Storage

MoOngy 2021 12



Persistent Volumes Lifecycle
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• There are two ways PVs may be 
provisioned: statically or dynamically.

• Static: A cluster administrator creates a 
number of PVs. They carry the details of 
the real storage, which is available for use 
by cluster users

• Dynamic: When none of the static PVs the 
administrator created match a user's 
PersistentVolumeClaim, the cluster may try 
to dynamically provision a volume specially 
for the PVC. This provisioning is based on 
StorageClasses
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• A user creates a PersistentVolumeClaim with a 
specific amount of storage requested and with 
certain access modes

• Claims will remain unbound indefinitely if a 
matching volume does not exist
• For example, a cluster provisioned with many 50Gi PVs would 

not match a PVC requesting 100Gi

• Access Modes
• ReadWriteOnce (RWO): RW on single node for all pods on node

• ReadOnlyMany (ROX): RO on multiple nodes

• ReadWriteMany (RWX): RW on multiple nodes and pods

• ReadWriteOncePod (RWOP): RW to a single pod

PVC Binding
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• The purpose of the Storage Object in Use 
Protection feature is to ensure that 
PersistentVolumeClaims (PVCs) in active use by a 
Pod and PersistentVolume (PVs) that are bound to 
PVCs are not removed from the system

• If a user deletes a PVC in active use by a Pod, the 
PVC is not removed immediately. PVC removal is 
postponed until the PVC is no longer actively used 
by any Pods

• If an admin deletes a PV that is bound to a PVC, 
the PV is not removed immediately. PV removal is 
postponed until the PV is no longer bound to a 
PVC
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• When a user is done with their volume, they can 
delete the PVC objects from the API that allows 
reclamation of the resource

• The reclaim policy for a PersistentVolume tells the 
cluster what to do with the volume after it has 
been released of its claim: Retain, Recycle or 
Delete

• Retain: Volume is available but data written 
remains on storage

• Recycle: Data written is delete and volume as all 
free space again

• Delete: Volume is deleted. Depends on Storage 
Class

PVC Release
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Storage

Persistent Volume

capacity defines storage size

storageClassName defines storage class

nodeAffinity defines where 
volume will be located to work 
properly on multi-node cluster {

accessModes defines allowed modes

Specific properties for local storage
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Persistent Volume Claim

storageClassName defines type of 
volume that Claim wants to use

resources defines amount of storage

accessModes needed on volume

To have a binding, all configs needs to 
be filled by an individual volume
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Motivation

• When running pods you may need to add some configuration to 
make it work properly

• For example, set database host that can be different depending the 
environment you are running it

• At same time, there are configurations that may be shared by 
different pods, like an external service

• Finally, having a way to update some configuration that don’t need 
Pods restart

• Kubernetes have a ConfigMap object to handle configurations

ConfigMaps
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What is a ConfigMap

• ConfigMap is an object used to store non-confidential data in key-
value pairs

• ConfigMap allows you to decouple environment-specific 
configuration from your container images, so that your applications 
are easily portable

• Pods can consume ConfigMaps as environment variables, 
command-line arguments, or as configuration files in a volume

• ConfigMaps as volumes are updated automatically when 
ConfigMap is updated

• ConfigMaps as environment variables are not updated 
automatically. A Pod restart is needed

ConfigMaps
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ConfigMaps

ConfigMap Manifest

ConfigMap name. Used for matching

Property-like keys. One key, one value

File-like keys. One key, a list of values



MoOngy 2021 25

ConfigMaps

Pod Spec

ConfigMap as environment variable

Pod Volume mount using ConfigMap

ConfigMap as Volume

{

{
{



Demo:  Con f igMaps
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Motivation

• Your pods need to have access to sensitive data, like password, 
token, etc.

• You may define that sensitive data on Pod specification or container 
image but that can arise some security concerns

• Additionally having sensitive data configured apart from the pods 
can bring more agility

• Secrets are Kubernetes objects to reach these goals

Secrets
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What is a Secret

• Secrets allow to store and manage sensitive information, such as 
passwords, OAuth tokens, ssh keys and TLS certificates

• Storing confidential information in a Secret is safer and more 
flexible than putting it in a Pod definition or in a container image

• Pods can consume Secrets as environment variables, command-line 
arguments, or as configuration files in a volume

• Secrets as volumes are updated automatically when Secrets is 
updated

• Secrets as environment variables are not updated automatically. A 
Pod restart is needed

Secrets
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Types of Secret
Secrets
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https://kubernetes.io/docs/concepts/configuration/secret/#secret-types

Default ->

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types


Encoded, NOT Encrypted

• Secrets are stored unencrypted inside the cluster!

• Secrets are only encoded using base64 algorithm which can be 
easily reverted

• AS being a regular object on Kubernetes, can be retrieved as plain 
text by someone with API access

• Some options to handle this security concern
• Using Kubernetes RBAC to restrict reading and writing of Secrets

• Using 3rd-party services to store secrets and integrate with Kubernetes (like Azure Key 
Vault, Hashicorp Vault, etc.)

Secrets
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Secrets

Secret Manifest

Pair Key-Value with secret

Secret value encoded on base64
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Secret

Pod Spec

Secret as environment variable

Pod Volume mount using Secret

Secret as Volume

{
{
{



Using Kubectl Commands

• Create from literal (command line value)

kubectl create secret generic mysecret --dry-run=client \

--from-literal=secret=secretValue

• Create from file (encoding content)

kubectl create secret generic test-secret \

--dry-run=client --from-file=secret-file.json

• Using kubectl to encode content to base64

kubectl create secret generic test-secret \

--dry-run=client --from-file=secret-file.json –o yaml

Secrets
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Demo:  Sec re t s
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Lab 8: Storage in Kubernetes

Lab 08 - Storage in Kubernetes | docker-kubernetes-training 
(tasb.github.io)

Github
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https://tasb.github.io/docker-kubernetes-training/labs/lab08.html
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