
Kubernetes Advanced

Session #01
Review Main Concepts

Session Contents

● Kubernetes Architecture
● Kubectl
● Pods
● Namespaces
● Deployments
● Services
● Ingress

Kubernetes Architecture

Kubernetes Cluster

● A Kubernetes cluster consists of a set of machines (physical or virtual), called
nodes

● Control Panel or Master Node(s)manages the cluster and nodes
● Node(s) or Worker Node(s) runs containerized workloads
● Nodes can be heterogeneous (small, large, GPUs, Linux, Windows, etc.)

Kubernetes Cluster

Control Plane Components

● Make global decisions about the cluster (for
example, scheduling), as well as detecting and
responding to cluster events (for example, starting
up a new pod when a deployment's replicas field
is unsatisfied)

● Control plane components can be run on any
machine in the cluster. For simplicity, start all
control plane components on the same machine,
and do not run user containers on this machine.

Control Plane: API Server

● Component that exposes the Kubernetes API
● The API server is the front end for the

Kubernetes control plane
● Every request to manage your cluster should

use API Server
● Main implementation of a Kubernetes API

server is kube-apiserver.
● Scale horizontally, deploying more instances

and balance traffic between those instances

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

Control Plane: etcd

● Consistent and highly-available key value
store used as Kubernetes' backing store for
all cluster data

● Used as cluster backing store because of
simplicity and performance

● Don’t have a backup plan implementation on
the cluster, you need to do it manually

Control Plane : Scheduler

● Component that watches for newly created
Pods with no assigned node, and selects a
node for them to run on

● Factors taken into account for scheduling
decisions include: individual and collective
resource requirements,
hardware/software/policy constraints, affinity
and anti-affinity specifications

Control Plane : Kube Controller Manager

● Component that runs controller processes
● Each controller is a separate process, but to

reduce complexity, they are all compiled into a
single binary and run in a single process

● Some types of these controllers are:
● Node controller: Responsible for noticing and

responding when nodes go down.
● Replication controller: Responsible to run the number

of Pods defined on each ReplicaSet
● ServiceAccount controller: Create default

ServiceAccounts for new namespaces

Control Plane : Cloud Controller Manager

● Component that embeds cloud-specific control
logic

● Let you link your cluster into your cloud provider's
API, and separates out the components that
interact with that cloud platform from
components that only interact with your cluster

● If you are running Kubernetes on your own
premises, or in a learning environment inside your
own PC, the cluster does not have a cloud
controller manager.

Node Components

● Node components run on every
node, maintaining running pods and
providing the Kubernetes runtime
environment

● These components needs to run on a
machine to be considered part of the
Kubernetes cluster

Node: Kubelet

● An agent that runs on each node in
the cluster and makes sure that
containers are running in a Pod

● Takes a set of PodSpecs and ensures
that the containers described in those
PodSpecs are running and healthy

● Doesn't manage containers which
were not created by Kubernetes

Node: Kube Proxy

● Network proxy that runs on each
node in your cluster, implementing
part of the Kubernetes Service
concept

● Maintains network rules on nodes to
allow network communication to your
Pods from network sessions inside or
outside of your cluster

● kube-proxy uses the operating system
packet filtering layer

Node: CRI

● The container runtime is the software
that is responsible for running
containers

● Kubernetes supports container
runtimes such as containerd, CRI-O,
and any other implementation of the
Kubernetes CRI (Container Runtime
Interface)

Kubectl

CLI Tooling

● Preferable way to interact with Kubernetes Clusters is using CLI (Command-Line
Interface) tools

● Motivation
○ Allow to automatize interactions
○ Needs much less resources
○ Small attach surface

API Server

● API Server is a “simple” REST API application, you can manage a cluster by making
REST calls to the API Server

● Example HTTP Request: GET /api/v1/namespaces/default/pods/{name}
● Some challenges

○ Manage REST requests
○ Authn/authz

● Kubernetes have a CLI tool to make this interaction easily: kubectl

Kubectl

● API Server is a “simple” REST API application, you can manage a cluster by making
REST calls to the API Server

● Example HTTP Request: GET /api/v1/namespaces/default/pods/{name}
● Some challenges

○ Manage REST requests
○ Authn/authz

● Kubernetes have a CLI tool to make this interaction easily: kubectl
● First challenge, how to pronounce? ‘kubectl’: The definitive pronunciation guide

https://www.youtube.com/watch?v=2wgAIvXpJqU

Kubectl: How to use?

kubectl [command] [type] [name] [flags]

● command: Operation that you want to perform on one or more resources, for
example create, get, describe, delete.

● type: Resource type. Case-insensitive and can specify the singular, plural, or
abbreviated forms.

● name: Case-insensitive name of the resource. If the name is omitted, details for all
resources are displayed

● flags: Optional flags. For example, -o allow to specify output type of the
commands

Kubectl: Examples

● List all nodes
kubectl get nodes

● Get more details on node node01
kubectl describe node node01

● List all nodes with more details
kubectl get node –o wide

● List all nodes and labels
kubectl get node –show-labels

Kubectl: How to reference resources?

● You can perform an action on several resource using only one command even on
resources from different types

● Resources from same type
kubectl get pod pod-01 pod-02

● Resources from different types
kubectl get pod/pod-01 node/node01

kubectl Cheat Sheet | Kubernetes
Kubectl Reference Docs (kubernetes.io)

https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Kubectl: How to identify?

● kubeconfig is a file used to organize access to several cluster usually stored at
~/.kube/config

● Needs to be kept on a secure place since have complete information about
authn/authz of a user to a cluster

● This file should never be included on a repo or used for CI/CD process due to
security reasons

● Uses the concept of contexts. A context makes a match between a cluster (API
Server URL) and a user

Kubectl: Examples

● Get all clusters configuration available
kubectl config view

● Get actual context
kubectl config current-context

● Set another context
kubectl config use-context my-cluster-name

Krew: Plugin Manager for Kubectl

● Allow to search, install and update additional tools to use with kubectl
● 200+ plugins available: https://krew.sigs.k8s.io/plugins/
● Maintenance done by a Kubernetes SIG (Special Interest Group)
● List installed plugins

kubectl krew list

● Install a plugin
kubectl krew install <package>

https://krew.sigs.k8s.io/plugins/

Krew: Plugin Manager for Kubectl

● cert-manager: Manage cert-manager resources inside your cluster
● ctx: Switch between contexts in your kubeconfig
● ingress-nginx: Interact with ingress-nginx
● kubesec-scan: Scan Kubernetes resources with kubesec.io.
● ns: Switch between Kubernetes namespaces
● resource-capacity: Provides an overview of resource requests, limits, and

utilization

https://github.com/cert-manager/cert-manager
https://github.com/ahmetb/kubectx
https://kubernetes.github.io/ingress-nginx/kubectl-plugin/
https://github.com/controlplaneio/kubectl-kubesec
https://github.com/ahmetb/kubectx
https://github.com/robscott/kube-capacity

Pods

What is a Pod?

● Pods are the smallest deployable compute units you can create and manage in
Kubernetes

● A Pod can manage one or more containers, with shared storage (volumes),
environment variables, network resources, and a specification for how to run the
containers

● Containers running in a Pod share the same IP and ports and communicate using
native inter-process communication channels or localhost.

● Pods are immutable - if any change is made to the Pod specification (spec), a new
Pod is created and then the old Pod is deleted

pod
name: nginx-pod

Container

Name: nginx-container

Port 80

Image: nginx

Pod with one container

Pod with two containers

pod
name: redis-nginx

Container

key-value-store

Port 6379

Image:redis

Container

frontend

Port 80

Image: nginx

Kubectl: Interact with pods

● Get access to nginx-pod pod
kubectl –it exec nginx-pod -- sh

● Get access to container frontend on redis-nginx pod
kubectl exec –it redis-nginx –c frontend -- bash

● Port forwarding to port 80 on nginx-pod pod
kubectl port-forward nginx-pod 8080:80

● Port forwarding to port 80 on redis-nginx pod
kubectl port-forward redis-nginx 8080:80

Pods: Handle Resources

● A good practice when deploying pods on Kubernetes is to define the resources
that will be used by it

● Kubernetes uses 2 concepts: Requests and Limits
● Requests: Amount of resources used by scheduler to define which node could

best fit. This amount is always reserved for the pod
● Limits: Maximum amount of resources a pod can use.
● You can define request and limits for CPUs, memory and GPUs

Pods: Self Healing

● A Pod don’t have any ability of self-healing
● Pods can be used directly but usually a controller is used to automatically manage

your pods
● Each controller have specific way to control and manage their pods

○ ReplicaSets: Controls pods number of replicas
○ DaemonSets: Controls if one pods runs on each worker node
○ StatfulSets: Controls link between pod and persistent storage to handle pod state

Namespaces

Namespaces

● Kubernetes supports multiple virtual clusters backed by the same physical cluster
● These virtual clusters are called namespaces and creates logical partitions inside

your cluster
● Namespaces provide a scope for names
● Names of resources need to be unique within a namespace, but not across

namespaces.
● Namespaces can be used to

○ Allowing/denying network communications
○ Define RBAC permissions
○ Define resource quotas

Namespaces are mandatory?

● Usually, your resources are created in the context of a namespace
● “default” namespace is created on a empty cluster
● Your kubectl commands uses the namespace you set on your kubeconfig to

be the default
● You can use kubectl ns plugin to easily change it
● When you want to not change the default, you need to use the flag –n in each

command

Namespaces are mandatory?

● When a resource is not namespaced, means that is a cluster resource

● Get list of resources that aren’t namespaced scope
kubectl api-resources --namespaced=false

Deployments

Deployments

● A Deployment is a higher-level controller
that manages ReplicaSets

● Provides declarative updates to Pods along
with a lot of other useful features.

Deploymeny Manifest

Deployment properties

replica set the number of pods
selector finds the template

template defines PodSpec {

Deployment

● Describe a desired state in a Deployment
● Deployment Controller changes the actual state to the desired state at a

controlled rate
● Deployments provide fine-grained control over how and when a new pod version

is rolled out as well as rolled back to a previous state

Deployment Strategy

● A deployment strategy is a way to change or upgrade an application
● Rolling Update - Consists of slowly rolling out a new version of an application by

replacing instances one after the old version until all the instances are rolled out.
This is the default strategy for Kubernetes Deployments when none is specified.

● Recreate - Consists of shutting down all instances of the current version, then
deploying the new version. This technique implies downtime of the service that
depends on both shutdown and boot duration of the application.

Service

Services: Motivation

● Kubernetes Pods are created and destroyed to match the state of your cluster
making them ephemeral

● Each Pod gets its own IP address, however in a Deployment, the set of Pods
running in one moment in time could be different from the set of Pods running
that application a moment later

● If some set of Pods provides functionality to other Pods inside your cluster, how
do they find out and keep track of which IP address to connect to?

What is a Service?

● An abstraction that defines a logical set of loosely-coupled pods and a policy by
which to access them as a network service.

● Use selectors to define which pods to include.
● Every type of service (unless ExternalName) load balances traffic to Pods (Layer 4)
● Preferrable way to expose Pods to other Pods within the cluster
● Maps an external and global port to target (container) ports

What is a Service?

● Kubernetes automatically updates which Pods are available to which service by
creating Endpoints objects

● Exists 3 types of Services
○ ClusterIP
○ NodePort
○ LoadBalancer

● Exists one additional named ExternalName that to create an internal service to
redirect to another service
○ Mostly used to create a proxy server to an external service that may be changes between

environments

Load Balancing

● Depends on kube-proxy configuration mode
● User space proxy mode

○ Uses round-robin algorithm to select pods

● Iptables proxy mode (default)
○ Uses random selection of pods

● IPVS proxy mode
○ rr: round-robin
○ lc: least connection (smallest number of open connections)
○ dh: destination hashing
○ sh: source hashing

Service Discovery

● Any cluster have an internal service to allow service discovery
● This service is implemented using a plugin strategy
● Most used is CoreDNS, an opensource DNS server
● Every cluster have a global ClusterIP service named kube-dns with endpoints to

plugin pods
● Every pod is configured with kube-dns service IP as nameserver to name

resolution

ClusterIP

ClusterIP

● Exposes the Service on a cluster-internal IP
● Choosing this value makes the Service only

reachable from within the cluster
● Default service type
● Service name can be used as DNS

○ http://svc-name
○ http://svc-name.ns.svc.cluster.local

Traffic

NodePort

NodePort

● Exposes the Service on each Node's IP at
a static port (the NodePort)

● A ClusterIP Service, to which the
NodePort Service routes, is automatically
created.

● You'll be able to contact the NodePort
Service, from outside the cluster, by
requesting <NodeIP>:<NodePort>

● If nodePort property is not specified, is
automatically set a port from the range
30000-32767

Traffic

Node IP:Port Node IP:Port

LoadBalancer

LoadBalancer

● Exposes the Service externally using a cloud
provider's load balancer

● NodePort and ClusterIP Services, to which
the external load balancer routes, are
automatically created

● On-prem needs manual configuration
● ExternalIP means an IP External related with

cluster. No needs to be an Internet public
IP

Traffic

Node IP:Port Node IP:Port

External IP

Ingress

Motivation

● When need to expose HTTP/HTTPS endpoint outside of the cluster, you can use
LoadBalancer services

● That may overload the use of public (external IPs) and need several additional
components to implement this service

● Using services, you are only exposing on Layer 4 and when using HTTP/HTTPS is
more functional to work on Layer 7

● Security and configuration wise is important to have only one place to access
externally the cluster (DNS configuration, etc.)

What is Ingress?

● Ingress exposes HTTP and HTTPS routes from outside the cluster to services within
the cluster

● Traffic routing is controlled by rules defined on the Ingress resource
● An Ingress may be configured to give Services externally-reachable URLs, load

balance traffic, terminate SSL / TLS, and offer name-based virtual hosting
● An Ingress does not expose arbitrary ports or protocols. To expose services other

than HTTP and HTTPS to the internet you need to use NodePort or LoadBalancer
services

Ingress rule using URI

Ingress rule based on Host

Ingress Controller

● An Ingress is just a resource defining rules. This resource needs a controller to
implement those rules

● Kubernetes don’t have a native Ingress Controller and must be installed by cluster
administrator

● An ingress controller is mandatory to handle Ingress resource. Without it, Ingress
resource doesn’t do anything

Ingress Controller

● Most used ingress controller
○ Nginx ingress controller
○ Contour ingress controller
○ HAProxy ingress controller
○ Traefik ingress controller
○ Kong Ingress Controller
○ ingress-gce (Google Cloud only)
○ aws-load-balancer-controller (AWS only)
○ application-gateway-kubernetes-ingress (Azure only)

https://www.nginx.com/products/nginx-ingress-controller/
https://projectcontour.io/
https://haproxy-ingress.github.io/
https://doc.traefik.io/traefik/providers/kubernetes-ingress/
https://github.com/Kong/kubernetes-ingress-controller
https://github.com/kubernetes/ingress-gce
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/
https://github.com/Azure/application-gateway-kubernetes-ingress

Questions?

Lab #01: Cluster Ready

