
Kubernetes Advanced



Session #04
Security



Session Contents

● RBAC
● Service Accounts
● Quotas



RBAC



Motivation

● As any system, you want to have a control about who access your resources and 
which type of action can perform

● Your cluster can be reached by human users and services
● Human users are the operator who access the cluster using API Server (through 

kubectl)
● Services are your pods running inside your cluster
● Role-based Access Control (RBAC) is the implementation of authn/authz in 

Kubernetes



RBAC

● Role-based access control (RBAC) is a method of regulating access to computer 
or network resources based on the roles of individual users within your 
organization

● RBAC authorization uses the rbac.authorization.k8s.io API group to 
drive authorization decisions, allowing you to dynamically configure policies 
through the Kubernetes API

● By default, RBAC is not enabled on a Kubernetes cluster. You need to explicitly 
enable it



RBAC Objects

● RBAC API declares 4 objects: Role, ClusterRole, RoleBinding and 
ClusterRoleBinding 

● Role and ClusterRole contains rules that represent a set of permissions that are 
always additive (there are no "deny" rules)

● RoleBinding and ClusterRoleBinding grants the permissions defined in a role to a 
user or set of users



Role and ClusterRole

● Role and ClusterRole contains rules that represent a set of permissions that are 
always additive (there are no "deny" rules)

● A Role always sets permissions within a particular namespace; ClusterRole, by 
contrast, is a non-namespaced resource

● You can use a ClusterRole to:
○ Define permissions on namespaced resources and be granted access within individual 

namespace(s)
○ Define permissions on namespaced resources and be granted access across all namespaces
○ Define permissions on cluster-scoped resources



Role and ClusterRole Manifest

● When creating Role or ClusterRole manifest you create a list of rules
● For each rules you need to define

○ apiGroups
○ resources
○ verbs
○ Optionally, resourceNames

● To get a list of available values use
○ kubectl api-resources –o wide



Role and ClusterRole



RoleBinding and ClusterRoleBinding

● RoleBinding and ClusterRoleBinding grants the permissions defined in a role to a 
user or set of users

● It holds a list of subjects (users, groups, or service accounts), and a reference to 
the role being granted

● A RoleBinding grants permissions within a specific namespace whereas a 
ClusterRoleBinding grants that access cluster-wide

● A RoleBinding may reference any Role in the same namespace or reference a 
ClusterRole and bind that ClusterRole to the namespace of the RoleBinding

● If you want to bind a ClusterRole to all the namespaces in your cluster, you use a 
ClusterRoleBinding



Binding Subjects

● When creating a binding, you can specify 3 different subjects: users, groups and 
ServiceAccounts



Users and Groups

● Kubernetes don’t have a traditional user and groups definition
● To add a user, you need to use one of the available authentication methods

○ X509 Client Certs
○ Static Token File
○ Bootstrap Tokens
○ Service Account Tokens
○ OpenID Connect Tokens
○ Webhook Token Authentication
○ Authenticating Proxy

● X509 Client Certs is the preferable way to create local users



Users and Groups

● X509 Client Certs is the preferable way to create local users
● OpenID Connect allow you to connect your cluster with an identity external 

provider
● Groups are not defined directly on cluster configuration
● On X509 strategy, you can define the group(s) on key definition



Service Accounts

● A Service Account is a type of non-human account that provides a distinct 
identity in a Kubernetes cluster

● Pods can use a specific ServiceAccount's credentials to identify as that 
ServiceAccount

● This identity is useful in various situations, including authenticating to the API 
server or implementing identity-based security policies

● Service Accounts are a namespaced resource
● Every namespace have a default Service Account that is automatically used when 

any is configured on your resources



Service Accounts Use Cases

● Your pod needs to use API Server and you want to control resources and verbs to 
be used

● Access a private registry to fetch container images
● Third-party software installed on your cluster needs a Service Account to run



Demo | RBAC



Resource Quotas



Motivation

● Using a Cluster you are sharing all resources by everyone using the nodes
● This is a concern that one team could use more than its fair share of resources.
● How to explicitly make boundaries on the resources each team can use?
● Resource quotas are a tool for administrators to address this concern.



Resource Quotas

● Resource quotas are a tool for administrators to address this concern
● A resource quota, defined by a ResourceQuota object, provides constraints that 

limit aggregate resource consumption per namespace
● It can limit the quantity of objects that can be created in a namespace by type, as 

well as the total amount of compute resources that may be consumed by 
resources in that namespace



How it works

• Different teams work in different namespaces. This can be enforced with RBAC.
• The administrator creates one ResourceQuota for each namespace.
• Users create resources (pods, services, etc.) in the namespace, and the quota 

system tracks usage to ensure it does not exceed hard resource limits defined in a 
ResourceQuota.

• If creating or updating a resource violates a quota constraint, the request will fail 
with HTTP status code 403 FORBIDDEN with a message explaining the constraint 
that would have been violated.

• If quota is enabled in a namespace for compute resources like cpu and memory, 
users must specify requests or limits for those values; otherwise, the quota system 
may reject pod creation.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Sample Scenarios

• In a cluster with a capacity of 32 GiB RAM, and 16 cores, let team A use 20 GiB 
and 10 cores, let B use 10GiB and 4 cores, and hold 2GiB and 2 cores in reserve for 
future allocation.

• Limit the "testing" namespace to using 1 core and 1GiB RAM. Let the "production" 
namespace use any amount.



Constraints

• In the case where the total capacity of the cluster is less than the sum of the 
quotas of the namespaces, there may be contention for resources. This is handled 
on a first-come-first-served basis

• When a namespace has a ResourceQuota object defined creating a restriction on 
resource usage, all your pods should have a request and limit explicitly defined for 
memory and cpu



Resources Quota Object



Resources Quota Object



Demo | Quotas



Questions?


