
Kubernetes Advanced



Session #06
Helm



Session Contents

● What is Helm
● How to use Helm
● Helm Charts
● Author your chart



What is Helm



Motivation

● To deploy your applications, you need to create several manifest files
● When you want to deploy on different target clusters/environments 

you may need to make minor changes to reflect those differences
● Additionally, you may want to publish your manifest files on a 

centralized registry to make it available for other people/teams to 
reuse them

● To achieve this, a package manager-like tool is what you need
● Helm is the Kubernetes Package Manager



Helm Architecture

● Helm is a tool for managing Kubernetes packages called charts
● Helm can do the following:

○ Create new charts from scratch
○ Package charts into chart archive (tgz) files
○ Interact with chart repositories where charts are stored
○ Install and uninstall charts into an existing Kubernetes cluster
○ Manage the release cycle of charts that have been installed with Helm



Helm Concepts

● The chart is a bundle of information necessary to create an instance of 
a Kubernetes application

● The config contains configuration information that can be merged into 
a packaged chart to create a releasable object.

● A release is a running instance of a chart, combined with a specific 
config

● Optionally, you may use a registry where you place/publish your 
charts to be used by other



Helm Concepts



Helm Benefits

● Deployment speed: you can deploy any application available at the 
Helm chart repository within a single command.

● Prebuilt application configurations: Helm allows you to install 
community-supported applications with ease.

● Easy rollbacks: Helm allows you to easily roll back your application 
deployment to the previous version if something goes wrong.



How to use Helm



Steps to use Helm

1. Install Helm
2. Initialize a Helm Chart Repository
3. Use Helm Chart



Install Helm

● From Binary Releases
● Using a Helm Installation Script -> Preferable way
● Using Package Manager

○ Brew
○ Chocolatey
○ Apt, Yum, …



Initialize a Helm Chart Repository

● Before you run a Helm Chart you need to have access to them
● You can author your charts (next topic) or you can download them
● To download a pre-existing chart, you may connect to a repository 
● The way you interact with this repositories are similar the way you use 

any package manager



Helm OCI Registries

● OCI (Open Container Initiative) have a registry specification for 
container images registries

● Helm (on version 3) can use container registries with OCI support to 
store helm charts

● Several container registries have OCI Support
○ Docker Hub
○ GitHub Packages
○ All cloud providers Container Registries

● Central place to find Helm Charts is ArtifactHUB

https://artifacthub.io/


Use Helm Chart

● After getting access to the repository, you may search the helm chart 
that you want to use

● After knowing is name and version, you install the helm chart on your 
cluster

● Helm uses your active kubectl context configuration (cluster and 
permissions) to install the Helm Chart



Helm Chart Values

● To allow a dynamic behavior of a Helm Chart you may set different 
inputs when installing your Helm Chart

● You can pass those values directly on command line commands
● But to have a consistent way of configure different 

environments/context you should use Helm Chart Values file



Demo | Use Helm



Helm Charts



Motivation

● Until now we’ve used Helm to deploy chart that someone produced, 
like using Docker Hub to pull images

● Then I want to create my own charts, from my own applications, to 
make deploys

● After having those charts working, I may (or not) publish them to a 
registry



Helm Chart Structure



Helm: Chart File

● Main file that makes a folder be a Helm Chart folder
● You can see it like chart metadata
● Includes

○ Name
○ Description
○ Chart version
○ App version (different from chart version)



Helm: values File

● This file allows you to define values (variables) that can be set when 
someone uses your chart

● Can be more restrictive or more open
● All variables defined where can be used on your templates



Helm: templates Folder

● Where you define all Kubernetes objects that your application will 
need

● Are created using a Helm templating language that can use variables 
to implement dynamic behavior

● Can use functions to add extra features like conditionals and cycles
● Can have as much templates as needed to create all Kubernetes 

resources
● This files uses Go templating to make it fully dynamic



Author your Charts



Helm Templating

● Helm uses Go Templating language
● All template code needs to be placed inside {{ }}
● Everything inside this pattern will be translated automatically and 

producing a text file
● If you miss the format or the code inside it you’ll an error an the 

template will not be produced
● Again, biggest issue is about YAML indentation



Templates: Built-in Objects

● Some static built-in objects can be used to retrieve information from 
Helm details

● Release: This object describes the release itself
● Values: Values passed into the template from the values.yaml file 

and from user-supplied files
● Chart: The contents of the Chart.yaml file. Any data in 
Chart.yaml will be accessible here.



Templates: Built-in Objects



Templates: Built-in Objects



Templates: Functions

● You can use built-in function on templating using 2 approaches



Templates: Functions

● Pipelines is a great solution because allow you to create a chain of 
function call 

● The input of a function is the output of the previous on the chain

● Helm | Template Function List

https://helm.sh/docs/chart_template_guide/function_list/


Templates: If/Else



Templates: If/Else



Templates: Handle whitespaces

● The templates need to be produced using the YAML indentation in 
mind

● Not the right indentation level or empty lines should be give errors
● You may use {{- and -}} to clean whitespaces from left or right 

(newline is a whitespace)



Templates: Handle Whitespaces



Templates: With (scope)



Templates: With (scope)



Templates: Named Templates

● Helm chart create a file called _helpers.tpl that allow you to 
create named templates

● Those are helpful for you to reuse in several templates
● Follow all rules and format defined before



Templates: Named Template



Templates: Debugging

● helm lint: For verifying that your chart follows best practices
● helm template --debug: will test rendering chart templates 

locally.
● helm install --dry-run --debug: will also render your chart 

locally without installing it, but will also check if conflicting resources 
are already running on the cluster.

● helm get manifest: This is a good way to see what templates are 
installed on the server.



Demo | Helm Charts



Questions?


