
Continuous Integration

DevSecOps



Agenda

• Continuous Integration

• Security at Dev Time

• Git Hooks

• Handle Sensitive Data

• Credential Scanning



Continuous Integration

Secure DevOps



What is Continuous Integration

“… a software development practice where members of a team integrate 
their work frequently, usually each person integrates at least daily –
leading to multiple integrations per day. Each integration is verified by an 
automated build (including test) to detect integration errors as quickly as 
possible. Many teams find that this approach leads to significantly 
reduced integration problems and allows a team to develop cohesive 
software more rapidly.” (Martin Fowler)

Continuous Integration

Code
AUTO

Unit tests
AUTO

Integrate
AUTO

Acceptance 

Test

Deployment to 

Production



Goals

1. Leverage team collaboration

2. Enable parallel development

3. Minimize integration debt

4. Act as a quality gate

5. Automate everything!



Security at Dev Time

Secure DevOps



What is “Development Time”

• When you mention “Development” means when you’re creating your 
code

• On Everything as Code approach can be anything

• During authoring phase, you interact with your IDE/Code Editor and 
your source control system

• Current IDE/Code Editors uses the concept of extensions to leverage 
your experience

• With this approach you can shift-left several automation to you IDE



Source Control

• On Everything as Code source control is the center of all activities 
around our projects

• Nowadays the de facto source control tool is git

• Git adoption is probably the biggest within tech communities 
compared with every other tool



Git: Remote vs Local

• As a distributed source control, git uses the concept of remote and 
local vs server and client

• After remote repository events we can trigger several processes to start 
work upon our code

• Pull requests

• Code analysis

• SCA



Git: Local events

• But since git is full featured on local side we can leverage its event 
triggering capabilities to make validation of our code

• This validation can bring additional security guardrails to the code we 
add to our local repo (and in sequence, push to remote repo)

• This can be implemented using Git Hooks



Git Hooks

Secure DevOps



Git Hooks

• Git hooks are scripts that run automatically every time a particular 
event occurs in a Git repository

• They let you customize Git’s internal behavior and trigger customizable 
actions at key points in the development life cycle



Installing Git Hooks

• As everything in Git, the installation is a basic file operation

• You only need to add your scripts to .git/hooks folder

• If you look to the folder, you will get a list of samples scripts

• To enable it you only need to remove the .sample extension

• You can use any scripting language you like as long as it can be run as 
an executable



Authoring Git Hooks

• Sample hooks are developed in bash or PERL scripts

• You can use any scripting language you like as long as it can be run as 
an executable

• Python can be used giving you a common programming language to 
implement the hooks



Scope of Git Hooks

• Hooks are local to any given Git repository, and they are not copied 
over to the new repository when you run git clone

• And, since hooks are local, they can be altered by anybody with access 
to the repository.

• You can have server-side hooks but they manage different events



Local Git Hooks

• pre-commit

• prepare-commit-msg

• commit-msg

• post-commit

• post-checkout

• pre-rebase



Server-side Git Hooks

• pre-receive is executed every time somebody uses git push to push 
commits to the repository

• update is called after pre-receive, and it works much the same way

• post-receive gets called after a successful push operation, making it a 
good place to perform notifications



• The pre-commit script is executed every time you run git commit before 
Git asks the developer for a commit message or generates a commit 
object

• You can use this hook to inspect the snapshot that is about to be 
committed

• For example, you may want to run some automated tests that make 
sure the commit doesn’t break any existing functionality

• No arguments are passed to the pre-commit script, and exiting with a 
non-zero status aborts the entire commit

Local Git Hooks: pre-commit



• The prepare-commit-msg hook is called after the pre-commit hook to 
populate the text editor with a commit message

• This is a good place to alter the automatically generated commit 
messages for squashed or merged commits.

• One to three arguments are passed to the prepare-commit-msg script:

• The name of a temporary file that contains the message. You change the commit message by 
altering this file in-place.

• The type of commit. This can be message (-m or -F option), template (-t option), merge (if the 

commit is a merge commit), or squash (if the commit is squashing other commits).

• The SHA1 hash of the relevant commit. Only given if -c, -C, or --amend option was given.

Local Git Hooks: prepare-commit-msg



• The commit-msg hook is much like the prepare-commit-msg hook, but 
it’s called after the user enters a commit message

• This is an appropriate place to warn developers that their message 
doesn’t adhere to your team’s standards.

• The only argument passed to this hook is the name of the file that 
contains the message

• If it doesn’t like the message that the user entered, it can alter this file 
in-place (just like with prepare-commit-msg) or it can abort the commit 
entirely by exiting with a non-zero status

Local Git Hooks: commit-msg



• The post-commit hook is called immediately after the commit-msg hook

• It can’t change the outcome of the git commit operation, so it’s used 
primarily for notification purposes.

• The script takes no parameters and its exit status does not affect the 
commit in any way.

Local Git Hooks: post-commit



Git Hooks on a team

• Local hooks are not pushed to remote repos so cannot be directly 
shared

• You need to make always local configuration to activate them

• You may find any way to make this happen but there are two 
recommendations: symlinks or git template directory



Git Hooks on a team: Symlinks

• This approach uses the repo to store the hooks and then any 
developer need to do an initial configuration

• You store your hooks scripts on a folder called .hooks (as any other 
folder on you repo)

• Then you need to create symlink on .git/hooks folder to use the scripts 
on .hooks folder

• You may have a script that can be executed by any developer as soon 
as clone the repo



Git Hooks on a team: Git Template

• You can set a git configuration to point to a folder using this command: 
git config --global init.templateDir ${DIR}

• All the content of this folder ${DIR} will automatically copied to .git 
folder of your repo

 



Git Hooks: Solutions

• Apart from having you authoring your own git hooks there are some 
community-driven solutions

• Talisman, from ThoughtWorks focused on security

• Husky, a git hooks ”package manager”

• Pre-commit.com, another git hooks ”package manager”

• Detect-secrets, started as a scanning tool but now can be installed as 
pre-commit hook as well

https://typicode.github.io/husky/
https://pre-commit.com/
https://github.com/Yelp/detect-secrets


Talisman

• Open source project created and maintained by ThoughtWork

• Available on GitHub: https://thoughtworks.github.io/talisman/docs 

• Talisman is a tool that installs a hook to your repository to ensure that 
potential secrets or sensitive information do not leave the developer’s 
workstation

• It validates the outgoing changeset for things that look suspicious - 
such as potential SSH keys, authorization tokens, private keys etc

• Talisman can also be used as a repository history scanner to detect 
secrets that have already been checked in, so that you can take an 
informed decision to safeguard secrets.

https://thoughtworks.github.io/talisman/docs


Demo: Using Talisman

Secure DevOps





Lab 01: Enable GitHooks with Talisman

Secure DevOps



Handle Sensitive Data

Secure DevOps



Sensitive Information

• Sensitive information can be seen in several perspectives

• Can be passwords or other type of information that can give you 
access to data that you should not have access

• Can be tokens or keys that can give access to another servers or 
services

• Can be sensitive and personal data (PII) that can make you on a 
position to take advantage from another person



How to store that information

• Knowing that you need to keep that information secure you can always 
store it using some cypher method

• But in some place in time you need to have that information in clear 
text to be used accordingly

• Keys, tokens or password need to be used in clear text when you 
interact with expected server or machine

• Personal data needs to be in clear text for the correct person see 
her/his information

• Here we’ll focus on data used by systems, like passwords and tokens



How to store that information

• These information should not be in any case on your repo

• First, that information will give you access to something that you 
should not have access directly

• Second (and unfortunately), is still too common that the same 
password can be used to login in several servers (remember the lateral 
move attack)

• Same techniques arise on last years to help on this: password-less 
architectures, infra as code deployment, usage of Vaults, and credential 
scanning



Password-less architectures

• On modern architectures, password-less approach is the 
recommended way

• Passkeys for user logins instead of passwords and MFA

• For system integration, usage of Managed Identities concept allow you 
to not use user+pass or tokens for authentication

• These approach needs a deeper architectural change and make it 
harder to implement in a faster way



Infra as code deployment

• Infra as code is a great open to minimize passwords or tokens 
exposure

• If you manage your infra using this approach, provisioning and 
configuration is done on an automated way

• All sensitive information that need to be shared between several 
components can be done by code

• Another benefit is the secret rotation that can be done on a easy, 
automated and faster way

• More details later in this training



Usage of Vaults

• However there still are needs to keep secrets on a secure place

• Using CI/CD pipelines can help since you can store the secrets on the 
platform and then apply during automation process

• On last years, mainly with clouds, the concept of Vaults took a crucial 
place on this need

• All cloud providers have a PaaS solution, like Azure Key Vault

• There are cloud-agnostic options like Hashicorp Vault (with self-hosted 
option too)



Usage of Vaults

• The concept consists of a centralized solution where all data is ciphered 
using strong keys

• That keys are managed by the platform or even directly by the user

• When you use platform provided keys you can have auto-rotation 
process out of the box

• Then only allowed users (ideally services or service accounts) could 
have access to the decrypted data

• This integration can happen on automation processes or even directly 
on the application code



Credential Scanning

• Credential Scanning is the least protective measure to handle sensitive 
information

• Although is the easiest and faster to implement and should be a no-
brainer decision

• Can be a complement to the git hooks approach that we saw before

• This approach consists on running during CI process on your 
automation platform and scan your code to check for possible sensitive 
information 



Credential Scanning vs Git Hooks

• Centralized solution: You don’t need to rely on configuration on each 
developer machine (imagine on a open source project)

• More complete scanning: Git Hooks solution are local and smaller on 
their scope. Credential scanning solution are integrated solutions that 
are constantly updated

• Auto-revoke: Some solutions in the market (like GitHub Advanced 
Security) have an integrated feature that can contact directly the 
provider of the token to revoke automatically. This feature can minimize 
a lot the impact of a pushed token 



Implement CredScan into CI

Secure DevOps



Credential Scanning: Solutions

• gitleaks, open-source secret scanner for git repositories, being one of 
the most used. You need a free license for Enterprise repos

• Trufflehog. For Enterprise they are moving to a more complete (and 
paid) solution - trufflehog-enterprise

• GitHub Secret Scanning. Free for all public repos (personal or 
Enterprise). Part of GitHub Advanced Security pack for private repos

• GitGuardian. Paid solution with full integration with main Git providers 
like GitHub, Azure DevOps, BitBucket, …

• SpectralOne, from CheckPoint. Another paid solution (quite expensive) 
but with the best reporting system by far.

https://github.com/gitleaks/gitleaks
https://github.com/trufflesecurity/trufflehog
https://trufflesecurity.com/trufflehog-enterprise
https://docs.github.com/en/code-security/secret-scanning/secret-scanning-partnership-program/secret-scanning-partner-program
https://www.gitguardian.com/
https://spectralops.io/


Credential Scanning: Where to implement on CI?

• When you’re working on a collaborative approach, your repo should 
always have defined a protection rule on your main branch

• With this, you’re only capable to merge changes to main branch using 
a Pull Request

• Credential scanning is a mandatory part of your Pull Request approach

• When the scan send you an alert, you must perform two tasks: remove 
the sensitive information from your branch and review the repo history 
to cleanup that information too



Demo: GitHub Secret Scanning

Secure DevOps





Lab 02: Enable Secret Scanning

Secure DevOps




	Slide 1: Continuous Integration
	Slide 2: Agenda
	Slide 3: Continuous Integration
	Slide 4: What is Continuous Integration
	Slide 5: Goals
	Slide 6: Security at Dev Time
	Slide 7: What is “Development Time”
	Slide 8: Source Control
	Slide 9: Git: Remote vs Local
	Slide 10: Git: Local events
	Slide 11: Git Hooks
	Slide 12: Git Hooks
	Slide 13: Installing Git Hooks
	Slide 14: Authoring Git Hooks
	Slide 15: Scope of Git Hooks
	Slide 16: Local Git Hooks
	Slide 17: Server-side Git Hooks
	Slide 18: Local Git Hooks: pre-commit
	Slide 19: Local Git Hooks: prepare-commit-msg
	Slide 20: Local Git Hooks: commit-msg
	Slide 21: Local Git Hooks: post-commit
	Slide 22: Git Hooks on a team
	Slide 23: Git Hooks on a team: Symlinks
	Slide 24: Git Hooks on a team: Git Template
	Slide 25: Git Hooks: Solutions
	Slide 26: Talisman
	Slide 27: Demo: Using Talisman
	Slide 28
	Slide 29: Lab 01: Enable GitHooks with Talisman
	Slide 30: Handle Sensitive Data
	Slide 31: Sensitive Information
	Slide 32: How to store that information
	Slide 33: How to store that information
	Slide 34: Password-less architectures
	Slide 35: Infra as code deployment
	Slide 36: Usage of Vaults
	Slide 37: Usage of Vaults
	Slide 38: Credential Scanning
	Slide 39: Credential Scanning vs Git Hooks
	Slide 40: Implement CredScan into CI
	Slide 41: Credential Scanning: Solutions
	Slide 42: Credential Scanning: Where to implement on CI?
	Slide 43: Demo: GitHub Secret Scanning
	Slide 44
	Slide 45: Lab 02: Enable Secret Scanning
	Slide 46

