Continuous Delivery

DevSecOps

 Continuous Delivery

* CVEs

* Software Composition Analysis (SCA)

* Static Application Security Testing (SAST)

* Dynamic Application Security Testing (DAST)

Continuous Integration

Secure DevOps

What is Continuous Delivery

"Continuous delivery is a software engineering approach in which teams
produce software in short cycles, helping to ensure that the software can
be released quickly, reliably, at any time, following a repeatable and
sustainable process.

't aims at building, testing, and releasing software with greater speed and
frequency.

The approach helps reduce the cost, time, and risk of delivering changes
by allowing for more incremental updates to applications in production.

A straightforward and repeatable deployment process is important for
continuous delivery” (Martin Fowler)

Continuous Deployment vs Continuous Delivery

AUTO AUTO

AUTO

Continuous Deployment MANUAL

AUTO AUTO

AUTO

AUTO

Continuous Delivery

Benefits

* Fast, repeatable, predictable configurable deployments
* Lower Risk and higher quality
e Early feedback

» Faster collaboration, everyone is involved, and anyone can initiate
deployments

» Adapt and react a lot quickly
 Deploy during any business hours

» Change delivered without significant delay

DORA Metrics

Software delivery performance metric Elite High Medium Low
Deployment frequency On-demand Between once Between once Fewer than
(multiple deploys per week and per month and once per

For the primary application or service you work on, how per day) once per month once every six months
often does your organization deploy code to production 6 months

or release it to end users?

8
Lead time for changes Less than Between Between one More than
) o) one hour one day and month and six months
For the primary application or service you work on, what one week six months

is your lead time for changes (i.e., how long does it take
to go from code committed to code successfully running
@ production)?

Time to restore service Less than Less than Between More than
. — . one da one day and six months
For the primary application or service you work on, how onehioLr 4 one we)(/ek
long does it generally take to restore service when a
service incident or a defect that impacts users occurs
.g., unplanned outage or service impairment)?
Change failure rate 0%-15% 16%-30% 16%-30% 16%-30%

For the primary application or service you work on, what
percentage of changes to production or released to users
result in degraded service (e.g., lead to service impairment
or service outage) and subsequently require remediation
(e.g., require a hotfix, rollback, fix forward, patch)?

Practices

« Automated Deployments
* One Build Only
* Move forward

» Buildable and Deployable Trunk

* Feature Flags

* Shift-Right with Modern Deployments

CVEs

Secure DevOps

Common Vulnerability and Exposures (CVE)

« CVE is a dictionary of publicly known information security vulnerabilities
and exposures that provides a standardized naming scheme for these
Issues

« Each CVE entry contains a unigue identifier, a description of the
vulnerability, and references to advisories and patches

 On this database, each CVE found on open-source software are
published with vulnerability description and how to fix

* Allow to clearly identity all known vulnerabilities on open-source code
to allow you to have a more secure code

Common

Vulnerability and
Exposures (CVE)

CVE-2021-45046 rususien View JSON

Apache Log4j2 Thread Context Message Pattern and Context Lookup Pattern vulnerable to a denial of
service attack

© Important CVE JSON 5 Information +

Assigner: Apache
Published: 2021-12-14 Updated: 2022-07-25

It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-
default configurations. This could allows attackers with control over Thread Context Map (MDC) input data
when the logging configuration uses a non-default Pattern Layout with either a Context Lookup (for example,
$${ctx:loginld}) or a Thread Context Map pattern (%X, %mdc, or %MDC) to craft malicious input data using a
JNDI Lookup pattern resulting in an information leak and remote code execution in some environments and
local code execution in all environments. Log4j 2.16.0 (Java 8) and 2.12.2 (Java 7) fix this issue by removing
support for message lookup patterns and disabling JNDI functionality by default.

Product Status

© Learn About the Versions Section +
Vendor Versions
Apache Software Default Status: unknown
Foundation

« affected from Apache Log4j2 before 2.16.0
Product

Apache Log4j

Common Weakness Enumeration (CWE)

* It is a community-developed list of common software security
weaknesses.

« EFach CWE entry provides a description of the weakness, examples of its
occurrence in real-world software, and guidance on how to mitigate or
eliminate it.

* A CVE is defined on top of CWE (Common Weakness Enumeration)
definition, being an effective instance of 1+ CWE exploit

699 - Software Development

—m= [® API / Function Errors - (1228)

—= [Audit / Logging Errors - (1210)

—=+ k¥ Authentication Errors - (1211)

—H Authorization Errors - (1212)

—= [Bad Coding Practices - (1006)

—= [® Behavioral Problems - (438)

—= [® Business Logic Errors - (840)

—1+ Communication Channel Errors - (417)
—= [Complexity Issues - (1226)

—= [® Concurrency Issues - (557)

—= [@ Credentials Management Errors - (255)
—= [@ Cryptographic Issues - (310)

—= [@ Key Management Errors - (320)

—= [@ Data Integrity Issues - (1214)

— Data Processing Errors - (19)

— Data Neutralization Issues - (137)

—= [Documentation Issues - (1225)

—= [® File Handling Issues - (1219)

—= [@ Encapsulation Issues - (1227)

C ommon \/\/e 9 |<n eSS = [Ervor Conditions, Return Values, Status Codes - (389

—= [Expression Issues - (569)
. —= [Handler Errors - (429)
E NUMme rat |ON (CW E) —= [Information Management Errors - (199)
—1+ Initialization and Cleanup Errors - (452)
—= [@ Data Validation Issues - (1215)
—m= [Lockout Mechanism Errors - (1216)
— Memory Buffer Errors - (1218)
—= [® Numeric Errors - (189)
—= [® Permission Issues - (275)
—= [Pointer Issues - (465)
—= [Privilege Issues - (265)
—= [Random Number Issues - (1213)
—= [@ Resource Locking Problems - (411)
—= k% Resource Management Errors - (399)
—= [Signal Errors - (387)
—a= [State Issues - (371)
—a= [String Errors - (133)
—= [Type Errors - (136)
—ix User Interface Security Issues - (355)
—= [User Session Errors - (1217)

Common Vulnerability Scoring System (CVSS)

e [tis a framework for assessing the severity of vulnerabilities in software
systems

« CVSS assigns a score to each vulnerability based on its impact on the
system's confidentiality, integrity, and availability, as well as other factors
such as complexity and exploitability

 For each CVE a CVSS score is calculated granting a potential risk you're
exposed

Common Vulnerability Scoring System (CVSS)

 Uses 3 metrics to make the calculations: Base Metrics, Temporal Metrics
and Environmental Metrics

* This metrics produces a values between 0-10 to define severity

0.0 None
0.1-39 Low
40-6.9 Medium
70-89 High
9.0-10.0 Critical

Software Composition Analysis (SCA)

Secure DevOps

Open source by the numbers

Daam SHnD SPRANE IRAGE AMGNG arvbenprses hat oepioaad in s last decads, Acooneing b indiushry resaanch
In ithe | ast three years, that o has given way to open Souante contributions. by enterprise deneiopers
often under the auspices of corporate open S0UNCE PROYrams

Number of open source Open source Banehts of open
projects on the rise everywhere source contribution

af codebases audited by Security &% of 2,700 participarts in a
e | ' O u rce hrm Synopsys in 2018 contamed Linum Foundation survey have
Cpen SOLrce Components R SOLINCE prOQrams. of

BN 0 CREatE ONnE

-
A1%: SEy Open SOounte
Programs ane responsile for
Mumiber of opén SOunoe projects Peroentage of Gpen S
sl e im DE1% By IntroBoDks within audited codebases Coumimunities

i pad

|[dentified Vulnerabilities

CVSS Severity Distribution Over Time

This visualization is a simple graph which shows the distribution of vulnerabilities by severity over time. The choice of LOW, MEDIUM and
HIGH is based upon the CVSS V2 Base score. For more information on how this data was constructed please see the NVD CVSS page.

Z0.000

Loy .
MEDIIM .
HiGH .

Dimirbution

18.000

19.000

14,000

12.000

10.000

8.000

9.00

4.00

“mlml I
I

2002 2002 2004 2006 2008 2007 2008 2009 2010 201 2012 203 2014 2018 218 27 208 20 2020 2021

2001

=]

E=]

=]

2022

c CRaCk Eolnt Log4j - A TRUE CYBER PANDEMIC

Itis clearly one of the most serious vulnerabilities on the internet in recent years.
When we discussed the Cyber pandemic, this is exactly what we meant — quickly
Tr spreading devastating attacks.

% Corporate Networks
impacted per region \

Log4) Vulnerability
AMOUNT OF
ATTACKED
RESOURCES:

338,000

Check Point prevented over 820.000 attack
attempts since the outbreak

We have so far seen an attempted exploit on
over 40% of corporate networks globally

New variations of the original

X L X The data used in this report was detected by Check Point Software’s Threat Prevention technologies, stored and analyzed in Check Point ThreatCloud.
ex p [Ult be | ng Intr od UCEd ra p | d [y ThreatCloud provides real-time threat intelligence derived from hundreds of millions of sensors worldwide, over networks, endpoints and mobiles. The

: intelligence is enriched with Al-based engines and exclusive research data from Check Point Research - The intelligence & research arm of Check Point
- over 60 in less than 24 hours -

Software Technologies.

Software Composition Analysis (SCA)

* SO, Open Source is a bad and dangerous thing? Of course not!

 But you need to use it careful and mostly you need to clearly know what are
you using!

» Constantly run a scan on your dependencies is crucial to understand known
vulnerabilities on your supply chain

. Khnovving the vulnerabilities and their severity you may define you plan to fix
them

« Know what you're using means knowing your dependency graph! Your direct
dependency have its own dependencies. That dependencies have their own
dependencies and so on

Dependency Graph

* You select only one package but
look to your attack surface!

» Another risk is about how open
source project is maintained

\ [
— \ /N —
N o [\ N\
\ \ |
\ | \
\ ‘ \
] 1
/ [|
/ |
/ |
/ [
/ | [
/ Al
/ | [
/ | { |
\/ | v/
/ /
¥

/ ’
/ —
SRS
Ny -
T
=D

* On image, red means only one
maintainer.

[|
| | |
\ I .
\
|
f”’
/
/)

)4

Y BN /vy /
. e l
|
.’F“‘I
w/

* |s a risk you may want to take,
but you have to clearly know it!

SCA Tooling

MEND

Formerly WhiteSource

0 Dependabot

\
@ snYk (DEPENDENCY-TRACK

Demo: Dependabot + Snyk

Secure DevOps

Lab 03: Enable SCA

Secure DevOps

Static Application Security Testing (SAST)

Secure DevOps

Static Application Security Testing (SAST)

* Improve code security and quality on an easy and cost-effective way

» Makes an analysis on your source code and return insights about
security, performance, maintainability

* Fully automated and can be shift-left for developers IDE

* Runs to answer by with the question “Is the code secure?”
* s it vulnerable to injections (like SQL)?
« Does it use any weak encryption algorithms?

* Are cookies used with the right flags?

Static Application Security Testing (SAST)

05. Reporting

01. Information Gathering

Static

04. Analysis & Verification Application 02. Preparation and compilation
‘ j ‘ Security , ‘

Testing
(SAST)

03. Source Code Vulnerability Scanning

SAST: Tooling

OSemmle/CodeQL sonarcloud (52)
@snyk 4 klocwork

e Spectral Checkmarx

https://owasp.org/www-community/Source_Code_Analysis_Tools

https://owasp.org/www-community/Source_Code_Analysis_Tools

Demo: CodeQL + SonarCloud

Secure DevOps

Lab 04: Enable SAST

Secure DevOps

Dynamic Application Security Testing (DAST)

Secure DevOps

OWASP (Open Web Application Security Project)

« OWASP is a worldwide nonprofit organization focused on improving the
security of software (mainly web applications)

» Provides resources and guidance to developers, security professionals, and
organizations.

» Organizes conferences, training sessions, and other events around the world,
as well as maintains a community forum for developers and security
professionals to share knowledge and best practices related to web
application security

* Maintains various o’oen—source projects and tools that help identity and
mitigate security vulnerabilities in web applications, including the OWASP
/ed Attack Proxy (ZAP) and the OWASP Web Security Testing Guide.

OWASP TOP 10

* One of the most well-known contributions of OWASP is the OWASP
Top Ten Project

* Provides a reqgularly-updated list of the top 10 web application security
risks based on community feedback and research.

* The latest version is the OWASP Top 10 2021, which includes risks such
as injection flaws, broken authentication and session management, and
security misconfigurations.

* This Top 10 is updated reqularly but is interesting to observe that the
main vulnerabilities don't change a lot since 2013

OWASP TOP 10 2076 vs 2024

Comparison Between 2016-2024

OWASP-2016 OWASP-2024-Final Release Comparison Between 2016-2024

MI: Improper Platform Usage MI: Improper Credential Usage New

M2: Insecure Data Storage M2: Inadequate Supply Chain Security New

M3: Insecure Communication M3: Insecure Authentication/Authorization Merged M4&ME to M3

M4: Insecure Authentication M4: Insufficient Input/Output Validation MNew

MS: Insufficient Cryptography M5: Insecure Communication Moved from M3 to M5

ME: Insecure Authorization ME: Inadequate Privacy Controls MNew

M7: Client Code Quality M7: Insufficient Binary Protections Merged MB&MSY to M7

M8: Code Tampering M8: Security Misconfiguration Rewording [M10]

MS: Reverse Engineering M2 Insecure Data Storage Moved from M2 to M9

MI0: Extraneous Functionality MI0: Insufficient Cryptography mMoved from M5 to MI0

OWASP Top Ten Web Application Security Risks | OWASP

https://owasp.org/www-project-top-ten/

OWASP TOP 10

* [T your application is not affected by OWASP Top 10 vulnerabilities, can
you say your application is secure and solid?

OWASP TOP 10

o I your application is affected by any OWASP Top 10 vulnerabilities, can
yOu say your application is insecure?

Dynamic Application Security Testing (DAST)

» Dynamic application security testing (DAST) is a method of AppSec
testing in which testers examine an application while it's running

* No knowledge of the application’s internal interactions or designs at
the system level, and no access or visibility into the source program

* This "black box" testing looks at an application from the outside in,
examines its running state, and observes its responses to simulated

attacks made by a testing tool

* An application’s responses to these simulations help determine whether
the application is vulnerable and could be susceptible to a real

malicious attack.

DAST: What can be solved by?

* Detection of Runtime Vulnerabilities: Identifies security flaws in a
running application, such as SQL injection, XSS, and authentication
weaknesses, which might not be visible in static code reviews.

* Blind Spots in Source Code Analysis: Detects vulnerabilities in third-
party components or dynamically generated content that static analysis
might miss.

 Environment-Specific Issues: Captures vulnerabilities caused by
misconfigurations, integration errors, or differences between
development and production environments.

 Real-World Attack Simulation: Tests applications as an attacker would,
identifying exploitable weaknesses in live environments.

SAST vs DAST

& BLACKDUCK

SAST vs. DAST

Static application security testing (SAST) and dynamic application security testing (DAST)
are both methods of testing for security vulnerabilities, but they're used very differently.

Here are some key differences between the two:

White box security testing

* The tester has access to the
underlying framework, design, and
implementation.

« The application is tested from the

inside out.
« This type of testing represents the
developer approach.

Requires source code l
+ SAST doesn't require a deployed
application.

« It analyzes the source code or binary
without executing the application. J

| Finds vulnerabilities
earlier in the SDLC

« The scan can be executed as soon as
code is deemed feature-complete J

Less expensive to fix l
vulnerabilities
« Since vulnerabilities are found earlier

in the SDLC, it's easier and faster to
remediate them.

* Findings can often be fixed before the
code enters the QA cycle.

Can't discover run-time
and environment-related
issues

* Since the tool scans static code, it J

can't discover run-time vulnerabilities.

Typically supports all l
kinds of software

« Examples include web applications,

web services, and thick clients. l

SAST and DAST
techniques complement
each other.

Black box security testing

* The tester has no knowledge of the
technologies or frameworks that the
application is built on.

« The application is tested from the
outside in.

* This type of testing represents the

hacker approach.

Requires a running

application

* DAST doesn't require source code or
binaries.

« It analyzes by executing the

application.

Finds vulnerabilities toward
the end of the SDLC

« Vulnerabilities can be discovered after
the development cycle is complete.

More expensive to fix
vulnerabilities
« Since vulnerabilities are found toward

the end of the SDLC, remediation often
gets pushed into the next cycle.

« Critical vulnerabilities may be fixed as
an emergency release.

Can discover run-time and
environment-related issues

* Since the tool uses dynamic analysis
on an application, it is able to find
run-time vulnerabilities.

Typically scans only apps
like web applications and
web services

+ DAST is not useful for other types of
software.

Both need to be carried
out for comprehensive
testing.

. To learn how to create a comprehensive software security testin
&3 BLACKDUCK 3 i

program, visit www.BlackDuck.com/software

DAST Tooling

Q OWASP &2 BURPSUITE

Ik
ceee “”

s::sProbely e

Demo: OWASP Zap

Secure DevOps

Lab 05: Enable DAST

Secure DevOps

	Slide 1: Continuous Delivery
	Slide 2: Agenda
	Slide 3: Continuous Integration
	Slide 4: What is Continuous Delivery
	Slide 5: Continuous Deployment vs Continuous Delivery
	Slide 6: Benefits
	Slide 7: DORA Metrics
	Slide 8: Practices
	Slide 9: CVEs
	Slide 10: Common Vulnerability and Exposures (CVE)
	Slide 11: Common Vulnerability and Exposures (CVE)
	Slide 12: Common Weakness Enumeration (CWE)
	Slide 13: Common Weakness Enumeration (CWE)
	Slide 14: Common Vulnerability Scoring System (CVSS)
	Slide 15: Common Vulnerability Scoring System (CVSS)
	Slide 16: Software Composition Analysis (SCA)
	Slide 17: Open Source
	Slide 18: Identified Vulnerabilities
	Slide 19: Log4J Vulnerability
	Slide 20: Software Composition Analysis (SCA)
	Slide 21: Dependency Graph
	Slide 22: SCA Tooling
	Slide 23: Demo: Dependabot + Snyk
	Slide 24: Lab 03: Enable SCA
	Slide 25: Static Application Security Testing (SAST)
	Slide 26: Static Application Security Testing (SAST)
	Slide 27: Static Application Security Testing (SAST)
	Slide 28: SAST: Tooling
	Slide 29: Demo: CodeQL + SonarCloud
	Slide 30: Lab 04: Enable SAST
	Slide 31: Dynamic Application Security Testing (DAST)
	Slide 32: OWASP (Open Web Application Security Project)
	Slide 33: OWASP TOP 10
	Slide 34: OWASP TOP 10 2016 vs 2024
	Slide 35: OWASP TOP 10
	Slide 36: OWASP TOP 10
	Slide 37: Dynamic Application Security Testing (DAST)
	Slide 38: DAST: What can be solved by?
	Slide 39: SAST vs DAST
	Slide 40: DAST Tooling
	Slide 41: Demo: OWASP Zap
	Slide 42: Lab 05: Enable DAST
	Slide 43

