
Continuous Delivery

DevSecOps

Agenda

• Continuous Delivery

• CVEs

• Software Composition Analysis (SCA)

• Static Application Security Testing (SAST)

• Dynamic Application Security Testing (DAST)

Continuous Integration

Secure DevOps

What is Continuous Delivery

“Continuous delivery is a software engineering approach in which teams
produce software in short cycles, helping to ensure that the software can
be released quickly, reliably, at any time, following a repeatable and
sustainable process.

It aims at building, testing, and releasing software with greater speed and
frequency.

The approach helps reduce the cost, time, and risk of delivering changes
by allowing for more incremental updates to applications in production.

A straightforward and repeatable deployment process is important for
continuous delivery.” (Martin Fowler)

Continuous Deployment vs Continuous Delivery

Continuous Deployment

Code
AUTO

Unit tests
AUTO

Integrate
AUTO

Acceptance

Test

Deployment to

Production

Continuous Delivery

Code
AUTO

Unit tests
AUTO

Integrate
AUTO

Acceptance

Test

Deployment to

Production

MANUAL

AUTO

Benefits

• Fast, repeatable, predictable configurable deployments

• Lower Risk and higher quality

• Early feedback

• Faster collaboration, everyone is involved, and anyone can initiate
deployments

• Adapt and react a lot quickly

• Deploy during any business hours

• Change delivered without significant delay

DORA Metrics

Practices

• Automated Deployments

• One Build Only

• Move forward

• Buildable and Deployable Trunk

• Feature Flags

• Shift-Right with Modern Deployments

CVEs

Secure DevOps

Common Vulnerability and Exposures (CVE)

• CVE is a dictionary of publicly known information security vulnerabilities
and exposures that provides a standardized naming scheme for these
issues

• Each CVE entry contains a unique identifier, a description of the
vulnerability, and references to advisories and patches

• On this database, each CVE found on open-source software are
published with vulnerability description and how to fix

• Allow to clearly identify all known vulnerabilities on open-source code
to allow you to have a more secure code

Common
Vulnerability and
Exposures (CVE)

Common Weakness Enumeration (CWE)

• It is a community-developed list of common software security
weaknesses.

• Each CWE entry provides a description of the weakness, examples of its
occurrence in real-world software, and guidance on how to mitigate or
eliminate it.

• A CVE is defined on top of CWE (Common Weakness Enumeration)
definition, being an effective instance of 1+ CWE exploit

Common Weakness
Enumeration (CWE)

Common Vulnerability Scoring System (CVSS)

• It is a framework for assessing the severity of vulnerabilities in software
systems

• CVSS assigns a score to each vulnerability based on its impact on the
system's confidentiality, integrity, and availability, as well as other factors
such as complexity and exploitability

• For each CVE a CVSS score is calculated granting a potential risk you’re
exposed

Common Vulnerability Scoring System (CVSS)

• Uses 3 metrics to make the calculations: Base Metrics, Temporal Metrics
and Environmental Metrics

• This metrics produces a values between 0-10 to define severity

CVSS Score Qualitative Rating

0.0 None

0.1 – 3.9 Low

4.0 – 6.9 Medium

7.0 – 8.9 High

9.0 – 10.0 Critical

Software Composition Analysis (SCA)

Secure DevOps

Open Source

Identified Vulnerabilities

Log4J Vulnerability

Software Composition Analysis (SCA)

• So, Open Source is a bad and dangerous thing? Of course not!

• But you need to use it careful and mostly you need to clearly know what are
you using!

• Constantly run a scan on your dependencies is crucial to understand known
vulnerabilities on your supply chain

• Knowing the vulnerabilities and their severity you may define you plan to fix
them

• Know what you’re using means knowing your dependency graph! Your direct
dependency have its own dependencies. That dependencies have their own
dependencies and so on

Dependency Graph

• You select only one package but
look to your attack surface!

• Another risk is about how open
source project is maintained

• On image, red means only one
maintainer.

• Is a risk you may want to take,
but you have to clearly know it!

SCA Tooling

Demo: Dependabot + Snyk

Secure DevOps

Lab 03: Enable SCA

Secure DevOps

Static Application Security Testing (SAST)

Secure DevOps

Static Application Security Testing (SAST)

• Improve code security and quality on an easy and cost-effective way

• Makes an analysis on your source code and return insights about
security, performance, maintainability

• Fully automated and can be shift-left for developers IDE

• Runs to answer by with the question “Is the code secure?”

• Is it vulnerable to injections (like SQL)?

• Does it use any weak encryption algorithms?

• Are cookies used with the right flags?

Static Application Security Testing (SAST)

SAST: Tooling

Semmle/CodeQL

https://owasp.org/www-community/Source_Code_Analysis_Tools

https://owasp.org/www-community/Source_Code_Analysis_Tools

Demo: CodeQL + SonarCloud

Secure DevOps

Lab 04: Enable SAST

Secure DevOps

Dynamic Application Security Testing (DAST)

Secure DevOps

OWASP (Open Web Application Security Project)

• OWASP is a worldwide nonprofit organization focused on improving the
security of software (mainly web applications)

• Provides resources and guidance to developers, security professionals, and
organizations.

• Organizes conferences, training sessions, and other events around the world,
as well as maintains a community forum for developers and security
professionals to share knowledge and best practices related to web
application security

• Maintains various open-source projects and tools that help identify and
mitigate security vulnerabilities in web applications, including the OWASP
Zed Attack Proxy (ZAP) and the OWASP Web Security Testing Guide.

OWASP TOP 10

• One of the most well-known contributions of OWASP is the OWASP
Top Ten Project

• Provides a regularly-updated list of the top 10 web application security
risks based on community feedback and research.

• The latest version is the OWASP Top 10 2021, which includes risks such
as injection flaws, broken authentication and session management, and
security misconfigurations.

• This Top 10 is updated regularly but is interesting to observe that the
main vulnerabilities don’t change a lot since 2013

OWASP TOP 10 2016 vs 2024

OWASP Top Ten Web Application Security Risks | OWASP

https://owasp.org/www-project-top-ten/

OWASP TOP 10

• If your application is not affected by OWASP Top 10 vulnerabilities, can
you say your application is secure and solid?

OWASP TOP 10

• If your application is affected by any OWASP Top 10 vulnerabilities, can
you say your application is insecure?

Dynamic Application Security Testing (DAST)

• Dynamic application security testing (DAST) is a method of AppSec
testing in which testers examine an application while it’s running

• No knowledge of the application’s internal interactions or designs at
the system level, and no access or visibility into the source program

• This “black box” testing looks at an application from the outside in,
examines its running state, and observes its responses to simulated
attacks made by a testing tool

• An application’s responses to these simulations help determine whether
the application is vulnerable and could be susceptible to a real
malicious attack.

DAST: What can be solved by?

• Detection of Runtime Vulnerabilities: Identifies security flaws in a
running application, such as SQL injection, XSS, and authentication
weaknesses, which might not be visible in static code reviews.

• Blind Spots in Source Code Analysis: Detects vulnerabilities in third-
party components or dynamically generated content that static analysis
might miss.

• Environment-Specific Issues: Captures vulnerabilities caused by
misconfigurations, integration errors, or differences between
development and production environments.

• Real-World Attack Simulation: Tests applications as an attacker would,
identifying exploitable weaknesses in live environments.

SAST vs DAST

DAST Tooling

Demo: OWASP Zap

Secure DevOps

Lab 05: Enable DAST

Secure DevOps

	Slide 1: Continuous Delivery
	Slide 2: Agenda
	Slide 3: Continuous Integration
	Slide 4: What is Continuous Delivery
	Slide 5: Continuous Deployment vs Continuous Delivery
	Slide 6: Benefits
	Slide 7: DORA Metrics
	Slide 8: Practices
	Slide 9: CVEs
	Slide 10: Common Vulnerability and Exposures (CVE)
	Slide 11: Common Vulnerability and Exposures (CVE)
	Slide 12: Common Weakness Enumeration (CWE)
	Slide 13: Common Weakness Enumeration (CWE)
	Slide 14: Common Vulnerability Scoring System (CVSS)
	Slide 15: Common Vulnerability Scoring System (CVSS)
	Slide 16: Software Composition Analysis (SCA)
	Slide 17: Open Source
	Slide 18: Identified Vulnerabilities
	Slide 19: Log4J Vulnerability
	Slide 20: Software Composition Analysis (SCA)
	Slide 21: Dependency Graph
	Slide 22: SCA Tooling
	Slide 23: Demo: Dependabot + Snyk
	Slide 24: Lab 03: Enable SCA
	Slide 25: Static Application Security Testing (SAST)
	Slide 26: Static Application Security Testing (SAST)
	Slide 27: Static Application Security Testing (SAST)
	Slide 28: SAST: Tooling
	Slide 29: Demo: CodeQL + SonarCloud
	Slide 30: Lab 04: Enable SAST
	Slide 31: Dynamic Application Security Testing (DAST)
	Slide 32: OWASP (Open Web Application Security Project)
	Slide 33: OWASP TOP 10
	Slide 34: OWASP TOP 10 2016 vs 2024
	Slide 35: OWASP TOP 10
	Slide 36: OWASP TOP 10
	Slide 37: Dynamic Application Security Testing (DAST)
	Slide 38: DAST: What can be solved by?
	Slide 39: SAST vs DAST
	Slide 40: DAST Tooling
	Slide 41: Demo: OWASP Zap
	Slide 42: Lab 05: Enable DAST
	Slide 43

