
Infra As Code

DevSecOps

Agenda

• Infra as Code Principles

• Terraform

• Security Analysis

Infra As Code Principles

Secure DevOps

What is Infra As Code (IaC)?

• Infrastructure as code is the approach to defining your infrastructure
through source code that can then be treated just like any software
system

• Infrastructure can be computing (like VMs), networking, security and
any cloud managed service and resource (like Kubernetes clusters,
serverless, etc.)

• This code (as any type of code) must be kept in source control to allow
auditability, versioning all full integration with CI/CD

• Natural practice with cloud computing but can be use on several on-
prem virtual environments

IaC: Benefits

• Faster and easier way to provisioning, validate and reconfigure your
infra

• Help on configuration drift (consistency)

• Control cost on dynamic environments

• Full integration with source control

• Versioned together with source code (and pipelines)

• Serves as infrastructure live documentation using declarative
configuration

• Easy and recommended integration with CI/CD process, adding
additional layer of security

• Allow you to test your infra definition

IaC: Declarative configuration

• Declarative configuration allow to define desired state on a more human-
readable style

• You define what you want to achieve at the end

• How to implement your configuration is not your concern. Let the tooling do
that for you

• Opposite of imperative configuration like scripting where you need to define
all the steps

• Your configuration is idempotent, means you may ask to get your desired
state as much you need and at the end you get always the same outcome

• With imperative configuration you may get the same but you need to do it
by yourself

IaC: Tooling

Pros Cons

Proprietary

Always updated with last

features

Direct support from provider

Limited to one Provider

You may need to learn

several tools

Provider-

agnostic

Better on hybrid

environments

Bigger Communities

Feature parity

Changing Provider is not only

a configuration task

Terraform

Secure DevOps

What is Terraform

• Multi platform and multi provider IaC tooling from Hashicorp

• Biggest community with a big ecosystem of providers

• Provides a clean and easy way to write and maintain your code

• Uses a proprietary language (HCL) but similar with JSON/YAML

To create resources? Terraform Providers

• Big ecosystem of providers (Browse Providers | Terraform Registry)

• Allow to everyone defines your own provider if it not exists

https://registry.terraform.io/browse/providers

Terraform basic workflow

Init: Initialize a working directory with
Terraform configuration files

Validate: Validates configuration files in a
directory without checking remotely

Plan: It creates an execution plan (aka
WhatIf)

Apply: Deploy the changes required to
reach the desired state

Destroy: Remove the TF manage
infrastructure

Security Analysis

Secure DevOps

Shift-left Infra Scanning

• Integrating security checks early in the delivery pipeline allows
minimizing the cost of fixing security issues and ensure they do not
reach production

• In the context of cloud environments, companies usually describe their
infrastructure as code using tools like Terraform or CloudFormation

• Let’s review some tools that allow us to perform static analysis of
Terraform code in order to identify cloud security issues and
misconfigurations even before they pose an actual security risk

Shift-left Infra Scanning

• In the cloud, misconfigurations will get you hacked well before zero-
days do

• According to a report released in 2020, the NSA asserts that
misconfiguration of cloud resources is the most prevalent vulnerability
in cloud environments

• Looking at a few recent data breaches in AWS

• The Capital One breach was caused by a vulnerable application exposed to the Internet, along
with an overprivileged EC2 instance role

• The Los Angeles Times website started mining cryptocurrency in your browser due to a world-
writable S3 bucket

• The Magecart group backdoored Twilio’s SDK which was hosted on a world-writable S3 bucket

https://krebsonsecurity.com/tag/capital-one-breach/
https://www.tripwire.com/state-of-security/security-data-protection/la-times-website-cryptojacking-attack/
https://www.twilio.com/blog/incident-report-taskrouter-js-sdk-july-2020

Types of scan

• Static analysis tools for Terraform usually fall into one of two categories. They either
scan HCL code directly, or scan the Terraform plan file.

• Scanning the HCL code has the advantage of making the scan faster, stateless, and
not requiring any communication with a backend API

• Scanning the Terraform plan makes sure the scan runs after any interpolation,
function call, or variable processing in the HCL code

• On the other hand, it requires that we generate the plan before scanning, often
assuming that an authenticated communication with the appropriate backend is
available

• Typically, tools scanning the HCL code take no more than a few seconds to run and
can be used without network connectivity. However, they have a good chance of
missing security issues introduced by dynamically evaluated expressions

Key Benefits

• Early Detection: Identifies security vulnerabilities and misconfigurations early
in development, preventing them from reaching production.

• Compliance Assurance: Ensures Terraform code complies with industry
standards and internal security policies.

• Automated Security Integration: Seamlessly integrates with CI/CD pipelines,
automating security checks to maintain a continuous focus on security.

• Actionable Insights: Delivers detailed vulnerability reports, facilitating swift
and effective resolution.

• Scalability: Effectively handles increasing project complexity and size,
maintaining rigorous security standards without additional manual effort.

Main Features

• Policy Coverage: The tool should offer comprehensive scanning capabilities to
detect security vulnerabilities specific to Infrastructure as Code.

• Customizable Security Policies: It must allow users to define and adjust security
policies and severity levels to align with specific project needs or compliance
requirements.

• Seamless Integration: The analyzer should integrate effortlessly with existing CI/CD
tools and version control systems, facilitating a smooth workflow.

• Detailed Reporting: Clear and actionable reports are crucial. The tool should
prioritize issues based on severity and provide practical steps for remediation.

• Scanning Customization: Users should be able to tailor the scanning process to
focus on particular aspects of the codebase, enabling targeted and efficient
security assessments.

IaC Scanning Tools

IaC: Tooling

Policies Terraform Providers Custom Policies

Checkov 2110
aws, azure, gcp, digitalocean, kubernetes,

github, gitlab, ibm, linode, openstack, alicloud

yaml

Trivy 322
aws, azure, gcp, digitalocean, cloudstack, github,

oracle, openstack

OPA Rego

Terrascan 790
aws, azure, gcp, digitalocean, kubernetes,

docker, github

OPA Rego

IaC Scanning Tools

Docker

Image
IDE Plugin CI/CD System

Pre-Commit

hook

Checkov 2110
VSCode, JetBrains GitHub Actions, GitLab Yes

Trivy 322

VSCode, JetBrains Azure DevOps, GitHub Actions,

Buildkite, Dagger, Semaphore,

CircleCI, Concourse CI

No

Terrascan 790
VSCode GitHub Actions, Atlantis Yes

Demo: Checkov

Secure DevOps

Lab 06: IaC Scanning

Secure DevOps

	Slide 1: Infra As Code
	Slide 2: Agenda
	Slide 3: Infra As Code Principles
	Slide 4: What is Infra As Code (IaC)?
	Slide 5: IaC: Benefits
	Slide 6: IaC: Declarative configuration
	Slide 7: IaC: Tooling
	Slide 8: Terraform
	Slide 9: What is Terraform
	Slide 10: To create resources? Terraform Providers
	Slide 11: Terraform basic workflow
	Slide 12: Security Analysis
	Slide 13: Shift-left Infra Scanning
	Slide 14: Shift-left Infra Scanning
	Slide 15: Types of scan
	Slide 16: Key Benefits
	Slide 17: Main Features
	Slide 18: IaC Scanning Tools
	Slide 19: IaC: Tooling
	Slide 20: IaC Scanning Tools
	Slide 21: Demo: Checkov
	Slide 22: Lab 06: IaC Scanning
	Slide 23

